2,209 research outputs found

    Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier

    Full text link
    In order to describe heavy-ion fusion reactions around the Coulomb barrier with an actinide target nucleus, we propose a model which combines the coupled-channels approach and a fluctuation-dissipation model for dynamical calculations. This model takes into account couplings to the collective states of the interacting nuclei in the penetration of the Coulomb barrier and the subsequent dynamical evolution of a nuclear shape from the contact configuration. In the fluctuation-dissipation model with a Langevin equation, the effect of nuclear orientation at the initial impact on the prolately deformed target nucleus is considered. Fusion-fission, quasi-fission and deep quasi-fission are separated as different Langevin trajectories on the potential energy surface. Using this model, we analyze the experimental data for the mass distribution of fission fragments (MDFF) in the reactions of 34,36^{34,36}S+238^{238}U and 30^{30}Si+238^{238}U at several incident energies around the Coulomb barrier. We find that the time scale in the quasi-fission as well as the deformation of fission fragments at the scission point are different between the 30^{30}Si+238^{238}U and 36^{36}S+238^{238}U systems, causing different mass asymmetries of the quasi-fission.Comment: 11 figure

    Attempt to Suppress Numerical Viscosity in Incompressible SPH Method

    Get PDF
    In this study, attempts to suppress numerical viscosity in incompressible smoothed particle hydrodynamics (SPH) computations are reported. Two-dimensional computations are performed for inviscid and viscous flows to evaluate the effects of numerical viscosity suppression. The first approach is to reduce numerical viscosity at the wall by considering only the wall-normal components of the forces between fluid particles and wall particles. The second approach is to reduce numerical viscosity within the flow field by employing elliptic kernel functions whose major axes are aligned with the local mean flow direction. It is found that special treatment of the wall radically reduces the numerical wall friction. Using an elliptic kernel function is found to work reasonably well in reducing numerical viscosity

    Electric-field-induced lifting of the valley degeneracy in alpha-(BEDT-TTF)_2I_3 Dirac-like Landau levels

    Full text link
    The relativistic Landau levels in the layered organic material alpha-(BEDT-TTF)_2I_3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] are sensitive to the tilt of the Dirac cones, which, as in the case of graphene, determine the low-energy electronic properties under appropriate pressure. We show that an applied inplane electric field, which happens to be in competition with the tilt of the cones, lifts the twofold valley degeneracy due to a different level spacing. The scenario may be tested in infrared transmission spectroscopy.Comment: 4 pages, 1 figure; version with minor corrections published in EP

    The 95zr(n, gamma)96zr cross section from the surrogate ratio method and its effect on the s-process nucleosynthesis

    Full text link
    The 95Zr(n,gamma)96Zr reaction cross section is crucial in the modelling of s-process nucleosynthesis in asymptotic giant branch stars because it controls the operation of the branching point at the unstable 95Zr and the subsequent production of 96Zr. We have carried out the measurement of the 94Zr(18O,16O) and 90Zr(18O,16O) reactions and obtained the gamma-decay probability ratio of 96Zr* and 92Zr* to determine the 95Zr(n,gamma)96Zr reaction cross sections with the surrogate ratio method. Our deduced maxwellian-averaged cross section of 66+-16 mb at 30 keV is close to the value recommended by Bao et al. (2000), but 30% and more than a factor of two larger than the values proposed by Toukan & Kappeler (1990) and Lugaro et al. (2014), respectively, and routinely used in s-process models. We tested the new rate in stellar models with masses between 2 and 6 Msun and metallicities 0.014 and 0.03. The largest changes - up 80% variations in 96Zr - are seen in models of mass 3-4 Msun, where the 22Ne neutron source is mildly activated. The new rate can still provide a match to data from meteoritic stardust silicon carbide grains, provided the maximum mass of the parent stars is below 4 Msun, for a metallicity of 0.03.Comment: 10 pages, 6 figures, accepted for publication in Ap
    corecore