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Direct numerical simulations are carried out to investigate the role of the turbulent
region in a self-sustaining system with a spiral vortex structure in the three-dimensional
boundary layer over a rotating disk by solving the full Navier-Stokes equations. Two com-
putational domains with two different azimuthal sizes, 2π/68 and 2π/32, are used to deal
with different initially dominant wavenumbers. An artificial disturbance is introduced by
short-duration strong suction and blowing on the disk surface. After the flow field reaches
a steady state, and a turbulent region forms downstream of Re = 640. The turbulent
region is then removed using two methods; the sponge region, and application of the slip
condition at the wall. In both cases, the turbulent region disappears leaving the spiral
vortex structure upstream unaffected. Results suggest that the downstream turbulent
region is not related to the velocity fluctuations that grow by the global instability. In
addition, when the area where the slip condition is applied is changed from Re > 630 to
Re > 610, the velocity fluctuations decay. The results indicate that the vibration source of
the velocity fluctuations which grow by the global instability is located between Re = 611
and Re = 630.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

A spatially developing flow over a rotating disk in a quiescent fluid has attracted
considerable attention because its three-dimensional (3-D) boundary layer resembles
those over swept wings. An inviscid cross-flow instability can be observed in the boundary
layer. Smith (1947) first detected sinusoidal waves in the transition region using a hot-
wire probe by exciting the flow with random disturbances. Gregory et al. (1955) clearly
showed the presence of stationary vortices in the boundary layer. A series of traces in the
form of 28 ∼ 31 equi-angular spirals was observed on the disk surface using china clay at
a Reynolds number of around 430. Fedorov et al. (1976) observed that the interference
pattern was formed on the disk surface coated with naphthalene by two overlapping tracks
that were due to the different types of vortices. Smoke-flow visualization by Kohama
(1984) demonstrated that the secondary instability of the primary stationary cross-flow
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vortices in the form of ring-like co-rotating vortices triggered the rapid transition to
turbulence.

The transition process of the rotating disk has also been studied theoretically. Chebeci
& Stewartson (1980) found that the critical Reynolds number was 176 using the Orr-
Sommerfeld equation, which was much smaller than the observed values in earlier
experiments for stationary vortices. This discrepancy was due not only to the limitation
of the Orr-Sommerfeld equation, but also to the insensitivity of visual techniques to very
small disturbances (Wilkinson & Malik 1983). Kobayashi et al. (1980) and Malik et al.
(1981) reported that the difference in critical Reynolds number between experimental
results using hot-wire probes and the linear stability theory could be reduced by solving
the linearized perturbation equations, which include the effect of Coriolis force and the
streamline curvature neglected in the Orr-Sommerfeld equation. They found values of 261
and 287. Balakumar & Malik (1990) calculated the neutral stability curve for stationary
and nonstationary (travelling) disturbances. They found corresponding lowest critical
Reynolds numbers of 283.6 and 64.46 for the large and small growth rates, respectively.
Faller (1991) obtained similar values of 285 and 69. Through comparison with a flow
pattern visualized by dye, he concluded that the latter instability was the probable
source of early transition when the amplitude of external turbulent disturbances was
high enough to excite the viscous unstable mode.

These early stability analyses focused on convective instability in which the amplitude
of disturbances increased as they traveled downstream, because the stationary vortices
due to cross-flow instability were typically observed in experiments. Here, the term
“ convective” is a concept of the instability of the local velocity profile based on the
parallel-flow assumption (Huerre & Monkewitz 1985). Lingwood (1995) indicated the
possibility of another instability, assuming the parallel-flow assumption. She suggested
that the rotating-disk flow was radially“ absolutely” unstable above the Reynolds
number of 510, which she later corrected to 507 (Lingwood 1997). Lingwood (1996)
also performed an experiment on the temporal growth of disturbances associated with
absolute instability. She found that the radial propagation of the trailing edge of the
wave packet tended towards zero as it approached the location for the onset of absolute
instability. However, the parallel-flow assumption may not be appropriate for spatially
developing flows such as the rotating-disk flow, because it ignores the spatial growth
of the boundary layer. Itoh (2001a,b) studied the fundamental behaviour of solutions
in the vicinity of the singularity point at which the complex group velocity became
zero, using a method that could deal with the dispersion relation depending on the
space coordinates. He showed that absolute instability never arose in the rotating-
disk flow even if the complex group velocity was zero, owing to the break of the
parallel-flow assumption. In addition, the linear numerical simulations performed by
Davies & Carpenter (2003) showed that the convective behaviour eventually became
dominant in a spatially inhomogeneous flow like that on the rotating disk, although
an impulsively excited wave packet transiently exhibited strong temporal growth and
upstream propagation. These findings were supported in an experimental study by
Othman & Corke (2006).

As shown in Davies & Carpenter (2003), in a linear framework, absolute instability is a
necessary but not sufficient condition for global instability. Meanwhile, as shown by Pier
& Huerre (2001), nonlinear global instability occurs as soon as local absolute instability
arises at some point in the flow. Accordingly, a number of theoretical, experimental
and numerical studies have been performed to find the missing link between absolute
instability and global instability.

One possible connection was suggested by Pier (2003), who performed a secondary
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temporal analysis for the travelling cross-flow vortices saturated at a finite amplitude.
He found that these nonlinear primary waves initiated at the critical Reynolds number
of the absolute instability were already absolutely unstable with respect to secondary
perturbations. Another possibility was presented by Healey (2010), who studied the effect
of the outer edge of the rotating disk on global instability, ignored in all the previous
theoretical analyses where an infinite domain was assumed. He argued that absolute
instability at the edge of the disk was capable of generating linear global instability
using the linearized complex Ginzburg-Landau equation with weakly spatial variation.
Healey also showed that the corresponding nonlinear front, which appears at the onset
of absolute instability when the disk edge is far from the front, moved radially outwards
when the size of the disk was reduced. Similar results were numerically obtained by
Appelquist et al. (2015a). In contrast, Imayama et al. (2013) suggested that the edge
condition of the rotating disk was not relevant to the turbulent transition on the basis of
experimental results from three different edge configurations and various edge Reynolds
numbers. However, Imayama et al. (2013) also pointed out that the discrepancy of the
transition Reynolds numbers between experiments and Healey ’s theory could be due
to the difference in the definitions of the Reynolds number. Also, Pier (2013) suggested
that this difference could be solved by changing the outflow boundary condition in theory
from the zero-fluctuation condition to a proper condition which acts as a random noise
source.

The question to be answered is: What determines the frequency and temporal growth
rate of global instability? According to the linear analysis of Healey (2010), both values
are given by the absolute instability at the edge of the rotating disk. On the other
hand, the numerical results of Appelquist et al. (2015a), based on the linearized Navier-
Stokes equations, showed that frequency and temporal growth rate appear to be linked
to those of local absolute instability at the end of the linear domain. Pier & Huerre
(2001) pointed out that nonlinear self-sustained behaviour could be observed even when
a rotating-disk with a perfectly smooth surface was used. From a theoretical point of view,
such behaviour is closely related to the transition from convective to absolute instability,
resulting in the nonlinear global or so-called“ elephant”mode. Pier (2007) showed
that the stationary front of the elephant mode, which connects linear and nonlinear
regions at Re = 507 for the local absolute instability, acts as a source, i.e., a wavemaker,
and effectively tunes the entire system to its own frequency. Appelquist et al. (2016b)
also carried out direct numerical simulations based on full and linearized Navier-Stokes
equations for the rotating-disk flow with different disk-edge conditions. They found that
the critical Reynolds number for the nonlinear global mode was 583, independent of disk-
edge geometry, and suggested that the downstream turbulent region was the source for
the frequency selection.

The aim of the present work is to investigate the dominant factors affecting the self-
sustained mechanism that generates the spiral vortical structures found on rotating-
disk flows. We check whether the downstream turbulent region is acting as a vibration
source. The rest of this paper is organized as follows. In section 2, we describe numer-
ical procedures and computational conditions. In section 3, we present results for two
computational domains with different azimuthal sizes and for different computational
conditions used to eliminate the downstream turbulent region. Section 4 contains our
conclusions.
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Figure 1. von Kármán velocity profile.

2. Numerical formulation and numerical procedures

The stability of the 3-D boundary layer that forms over a rotating disk in stationary
fluid is studied by direct numerical solution of the full Navier-Stokes equations. For the
steady infinite-disk flow of a viscous incompressible fluid, the thickness of the boundary
layer is constant. Its velocity profile has an exact solution, named the von Kármán (von
Kármán 1921) similarity solution, as shown in figure 1, which can be obtained by solving
three ordinary differential equations,

F ′′(z) = H(z)F ′(z) + {F (z)}2 − {G (z)}2
G′′(z) = H(z)G′(z) + 2F (z)G(z)
H ′(z) = −2F (z),

(2.1)

under the boundary conditions,

F (0) = 0, G(0) = 1, H(0) = 0,
F (∞) = 0, G(∞) = 0,
F ′(0) = 0.510232618867, G′(0) = −0.615922014399,

(2.2)

using the fourth-order Runge-Kutta method. Here, z is the normal distance from the
disk. Variables F (z), G(z), H(z) are defined as,

F (z) =
U∗

r∗Ω∗ , G(z) =
V ∗

r∗Ω∗ , H(z) =
W ∗

√
ν∗Ω∗

, (2.3)

where z is the normal distance from the disk and superscript ∗ denotes dimensional
values. The variables (U∗, V ∗,W ∗) are the radial, azimuthal and wall-normal velocities,
respectively, in the cylindrical polar coordinate, r∗ denotes the radial distance from the
axis of rotation of the disk, and Ω∗ denotes the angular velocity. The boundary conditions
for F ′(0) and G′(0) in (2.2) are the same as in Miklavčič & Wang (2004). It should be
noted that a variable conversion is required for the wall-normal velocity component of
the base flow, H and W̃ , because different velocity scales are used for normalization.

In this study, this von Kármán velocity profile is used as a base flow, and only
the perturbation components are computed. Therefore, the governing equations are the
Navier-Stokes perturbation equations,

∂ũ

∂t̃
+ (Ũ + ũ) · ∇ũ+ ũ · ∇Ũ = −∇p̃+

1

R̃e
∇2ũ+ f , (2.4)
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Figure 2. Computational domain.

and the continuity equation,

∇ · ũ = 0, (2.5)

where ũ = (ũ, ṽ, w̃) and Ũ = (Ũ , Ṽ , W̃ ) are the radial, azimuthal and wall-normal
components of perturbation velocities and base-flow velocities, respectively, in cylindrical
polar coordinates. Also, p̃ is pressure, t̃ is time, and a forcing term f is used in the sponge
regions. All the variables in the governing equations are nondimensionalized by the proper
radius r∗u, the rotation velocity r∗uΩ

∗, the time scale r∗u/(r
∗
uΩ

∗) and the pressure (r∗uΩ
∗)2ρ,

where ν∗ is the kinematic viscosity and ρ∗ is the density. The radius r∗u represents an
arbitrary characteristic length. During this simulation, the value of r∗u is set to be unity
for convenience. Thus, the Reynolds number for simulations is given by

R̃e =
r∗u

2Ω∗

ν∗
. (2.6)

From a physical point of view, it is convenient to use the thickness of the boundary layer√
ν∗/Ω∗ instead of r∗u as a length scale, and also, to use the local rotation velocity r∗Ω∗

instead of r∗uΩ
∗ as a velocity scale. Therefore, the Reynolds number is defined again as

Re =

√
ν∗/Ω∗r∗Ω∗

ν∗
= r∗

√
Ω∗

ν∗
= r, (2.7)

which means that this Reynolds number Re is equivalent to the nondimensional radial
position r on the disk. Similarly, the velocity components ũ and Ũ are converted to
u = (u, v, w) and U = (U, V,W ). The rotation number of the disk is defined as T =
t∗Ω∗/2π.

The governing equations (2.4) and (2.5) are solved by a finite difference method
(the MAC method). The second order Crank-Nicolson semi-implicit scheme is used for
time advancement. For discretization of spatial derivative terms, the third order upwind
difference scheme (Kawamura et al. 1986) is applied only to the convection terms, and
the fourth order central difference scheme is applied to the other terms. A 27-color SOR
method is used to solve the Poisson equation. All the simulations are performed on a
multi-GPU platform, which consists of four GPU cards (Nvidia GTX-TITAN) for faster
and parallelized computation.

The computational domain is illustrated in figure 2, and the computational parameters
are listed in table 1. Inside radius 750, the disk surface is rotating, while the surface
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outside is not moving. To reduce the computational cost, the domain is limited to a
fan-shaped region instead of a full circular disk. The periodic boundary conditions are
used in the azimuthal direction. The domain covers the region of 450 ⩽ r ⩽ 853 (or
854.66 for the fine mesh case in table 1), 0 ⩽ θ ⩽ 2π/β and 0 ⩽ z ⩽ 54. For azimuthal
wavenumber β, 68 or 32 are selected. The azimuthal wavenumber β = 68 is the critical
azimuthal wavenumber for the onset of absolute instability, according to the theoretical
prediction of Lingwood (1995). Azimuthal wavenumber β = 32 is the typical number of
stationary vortices observed at higher Reynolds number, and β = 24 ∼ 26 is more typical
at lower Reynolds number. Numerical simulations are carried out under the following
three grid conditions. 2π/68 computation is a base condition for β = 68. In the 2π/32
region computation, the computational domain is much larger in the azimuthal direction,
which can check the effect of the periodic boundary condition in this direction. We also
checked grid dependency by comparing the ordinary mesh 2π/68 computation with the
fine mesh 2π/68 computation, which has 1.5 times greater resolution in each direction.
In all cases, the grids are concentrated near the disk by a geometric series of a common
ratio of a and the first term of zn, which is z0. Thus, the wall-normal location is given
by,

zn = z0
anz − 1

a− 1
, (2.8)

where nz is the n-th grid number in the wall-normal direction. The values of a and the
first term z0 are given in table 1.

As an artificial disturbance, wall-normal short-duration suction and blowing was
performed from an annular slit of width 4 in the disk surface. The Reynolds number
of the suction and blowing location, Re = 598 ∼ 602, is higher than the critical Reynolds
number for the global instability, Re = 583 for β = 68, which is approximately equal to
the critical Reynolds number for the global instability, Re = 599 for β = 64 (Appelquist
et al. 2018). Relatively strong suction and blowing was used to quickly establish a wavy
structure in the flow field. The velocity profiles of the suction and blowing consist of two
parts: the spatial amplitude depending on the azimuthal direction wa and the temporal
amplitude wt,

wexite(θ, t) = wa(θ, t)wt(t). (2.9)

These two terms are given by

wa(θ, t) = wa,max cos(β(θ − t)), (2.10)

wt(t) = 4(1− e−50t2)e−50t2 , (2.11)

where wa,max = 0.1V , 0 < θ < 2π/β and 0 < t < 0.06 × 2π. Figure 3 shows the initial
spatial amplitude wa(θ, 0) and the temporal amplitude wt(t). T in the figure is the number
of rotations, which is T = t/2π. The azimuthal wavenumber of the disturbance is set to
be equal to the azimuthal number of computational domain, β. The forcing disturbance,
which is the short-duration suction and blowing, is always stationary relative to the
rotating disk surface, because it has a same angular velocity as the rotating disk.

2.1. Boundary conditions and initial condition

The boundary conditions for the perturbation components are determined by referring
the conditions of Appelquist et al. (2015a). During the present simulations, the von
Kármán (von Kármán 1921) similarity solution, which is obtained by the preliminary
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β (r,θ,z) Nr ×Nθ ×Nz (∆r,∆θ,z0,a) (∆r+,r∆θ+,∆z+)

r ∈ [450,853] ∆r = 1 ∆r+ = 0.880
2π
68

68 θ ∈ [0, 2π
β
] 404×66×62 ∆θ = 2π

β×(Nθ−1)
710∆θ+ = 0.890

z ∈ [0,54] z0 = 0.05, (a = 1.0750) ∆z+ = 0.044

r ∈ [450,853] ∆r = 1 ∆r+ = 0.900
2π
32

32 θ ∈ [0, 2π
β
] 404×144×62 ∆θ = 2π

β×(Nθ−1)
710∆θ+ = 0.880

z ∈ [0,54] z0 = 0.05, (a = 1.0750) ∆z+ = 0.045

r ∈ [450,854.66] ∆r = 2
3

∆r+ = 0.690
2π
68

68 θ ∈ [0, 2π
β
] 608×108×92 ∆θ = 2π

β×(Nθ−1)
710∆θ+ = 0.640

(fine mesh) z ∈ [0,54] z0 = 0.04, (a = 1.0469) ∆z+ = 0.042

Table 1. Computational conditions for 2π/68, 2π/32 and 2π/68(fine mesh). The parameters
are the azimuthal wavenumber β, the radial, azimuthal and wall-normal grid numbers Nr, Nθ

and Nz, respectively, the grid resolutions ∆r, ∆θ, z0 and a, and the wall units ∆r+,r∆θ+,∆z+

at Re = 710.
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Figure 3. (a) The initial spatial amplitude of the artificial disturbance, wa(θ, 0). (b) The
temporal amplitude of the artificial disturbance, wt(t).
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Figure 4. The values of sponge function in the entire radial direction. λin,max and λout,max are
the max values at the inflow and outflow regions, respectively.
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computation, is used as the base flow of three-dimensional rotating-disk boundary layer.
The disk surface is rotating in the region from the inlet (Re=450) to Re=750, while
it stands still in the region of Re > 750. This configuration is the same as that of
the experimental study by Imayama et al. (2014). Thus, we use two different non-slip
boundary conditions for fluctuating components in accordance with the rotational and
irrotational parts of the disk. The former boundary conditions are given by

ũ = ṽ = w̃ = 0. (2.12)

and the latter boundary conditions are

ũ = 0, ṽ = − r∗Ω∗

r∗uΩ
∗ , w̃ = 0. (2.13)

First, a conventional Neumann condition for the outflow boundary was tested, which
ended up with contamination of the inflow due to undesirable reflections at the outflow
boundary as the turbulent fluid flowed out. In order to prevent such contamination by
nonphysical reflections, sponge regions were introduced, where the velocity fluctuations
were forced to be damped to a sufficiently weak level at which the mean flow could be
assumed to be equal to the base flow. The sponge regions were placed at both the inflow
and outflow boundaries, as shown in figure 2. The sponge function is defined as

f = −λ(Re)ũ, (2.14)

where the function λ(Re) is given by

λ(Re) =


1 (Re ≦ 460),
1− 1/(1 + e1/(Re1−1)+1/Re1) (460 < Re < 470) (Re1 = Re−460

10 ),
0 (470 ≦ Re ≦ 810),
15/(1 + e1/(Re2−1)+1/Re2) (810 < Re < 830) (Re2 = Re−810

20 ),
15 (Re ≧ 830).

(2.15)

Figure 4 shows the profile of sponge function λ(Re), where λin,max is 1, and λout,max is
15 for all computations. The inlet sponge region is from the inlet through Re = 470.
The outlet sponge region is Re > 810, right after the stationary disk given as the non-
slip condition region, Re = 750 ∼ 810. The perturbation velocities are set to be zero
at the upstream and downstream boundaries in the radial direction. The perturbation
components ũ, ṽ are zero and dw/dz = p on the upper boundary surface, which is the
same as Appelquist et al. (2015a). Because of the non-slip boundary condition, it takes
time to reach a steady state. Therefore, the flow field after 1.5 rotations is used as the
initial flow condition.

3. Results and discussion

3.1. Computation in 2π/68 domain and code verification

We compared our results with other DNS data in order to verify the validity of our
simulation code.

Figure 5 shows the RMS profiles of velocity fluctuation components in each direction
after the growth rate of the flow field reached a steady state. Appelquist et al. (2016b)
used a short volume force to disturb the flow, whereas we used a local suction and blowing
in our computation. Data of radial locations, Re = 570, are presented. The locations are
the same as in figure 10 of Appelquist et al. (2016b). The RMS values of each velocity
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Figure 5. The RMS values of velocity fluctuation components in each direction (r, θ and z) at
Re = 570 for 2π/68 computation. All the profiles are normalized by the maximum value of the
azimuthal profile.

fluctuation component are given by
urms =

[
1

(2π/β)

∫ 2π/β

0
(u− u)2dθ

]1/2
vrms =

[
1

(2π/β)

∫ 2π/β

0
(v − v)2dθ

]1/2
wrms =

[
1

(2π/β)

∫ 2π/β

0
(w − w)2dθ

]1/2
,

(3.1)

where the bar denotes the mean value. At each streamwise location, the data is normalized
by the maximum value of vrms,max at that location. The profiles of the present simulation
agree well with those of Appelquist et al. (2016b). From the results, we concluded
that there were no problems with our code in simulating the behaviour of disturbance
introduced from the upstream surface of the rotating disk.

Figure 6 shows the profiles of the total mean velocity in the azimuthal direction at
different radial locations Re = 490 ∼ 730. The location of the boundary layer outer
edge, which is defined as V = 0.05, is also shown in the figure. The azimuthal velocity
component for the 2π/68 region computation is spatially and temporally averaged at
each location through the rotation number T = 3.5 ∼ 5.5, which is after the flow field
has reached a steady state. The velocity profiles are self-similar, and the boundary layer
thickness is kept constant at z = 3.6 throughout the laminar region, which is upstream
of Re < 630. The results agree with the von Kármán similarity solution. When the
Reynolds number exceeds 630, the boundary layer thickness increases considerably, and
the velocity gradient near the wall becomes larger. The boundary layer thickness reaches
20 at Re = 730. The velocity profiles in these higher Reynolds numbers become close to
those of fully turbulent boundary layers. The results agree with the experimental study
by Imayama et al. (2014), although the deviation from the laminar profile starts at the
smaller Reynolds number of 550 in their case. The reason for the discrepancy is probably
that in the experiments, minute roughness is unavoidable on a real disk surface, which
would continuously excite the stationary mode. Appelquist et al. (2016a) studied the
linear effect of distributed roughness on the stationary convective modes and showed
that the good agreement is present among the local linear stability analysis, DNS in a
linear framework and experiment.

Figure 7(a) shows the spatial and temporal developments of log(vrms) measured at z
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Figure 6. Profiles of the mean azimuthal velocity for the 2π/68 region computation at different
radial locations: Re = 490 (A), 510 (B), 530 (C), 550 (D), 570 (E), 590 (F), 610 (G), 630 (H),
650 (I), 670 (J), 690 (K), 710 (L) and 730 (M). The solid straight line at z = 3.6 indicates
the theoretical boundary-layer thickness for the laminar profile, which is defined as the height
where V = 0.05. The velocity data is spatially averaged in the azimuthal direction and temporally
averaged for T = 3.5 ∼ 5.5, which is after the flow field reaches the steady state. The location
of the boundary layer outer edge is also shown by a broken line.

Figure 7. Spatio-temporal development of log(vrms) at z = 1.3 for different grid resolutions,
(a) ordinary mesh, and (b) fine mesh. The color bar indicates the value of log(vrms).

= 1.3. The initial local disturbance is added at Re ≈ 600. The strong, highly unsteady
velocity fluctuation, represented by the numerous black lines in the white area, is
convected downstream up to approximately T = 0.7 ∼ 0.8. After that, all the borders
between the different levels of velocity fluctuations become parallel, which indicates that
the distribution becomes steady. Downstream of Re > 640, a fully turbulent region is
formed. Another simulation with a finer grid resolution was performed to investigate the
influence of grid resolution on the numerical results; results are shown in figure 7(b) as
the case for 2π/68(fine mesh). In this case, the computation was terminated at T = 1.8,
because the flow field became steady and the profile stopped changing with time. Little
difference in the computational results could be found between the two cases, which
confirm that the grid used in the ordinary mesh case was sufficiently fine. These results
also agree with the DNS by Appelquist et al. (2015b), which had the outflow boundary at
Re = 700. From the comparison, we determined that our simulation code has sufficient
accuracy to analyze the flow field on the rotating disk.

Figure 8 shows the isosurface of the second invariant of velocity gradient tensor Q at
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Q = 50 for the case of 2π/68. In the figure, vortical structures at T = 0.02, 0.10, 0.40
and 5.50 are shown, where T = 0.02 is the moment the disturbance amplitude reaches
its maximum, and T = 5.5 is after the flow field reaches the steady state. A disturbance
is added to the boundary layer at Re = 598 ∼ 602, which is in the region where global
instability is unstable. The disturbance grows while flowing down in the radial direction,
and by T = 0.1, a complicated vortical structure, which represents turbulence, is formed.
When the flow field settles down, as by T = 5.5, a turbulent flow can be found in a large
area downstream around Re = 640 ∼ 650. Also at T = 5.5, spiral vortices can be clearly
observed in the region Re = 590 ∼ 640, upstream of the turbulent region. At T = 0.4,
the axisymmetric vortices can be observed on the stationary disk surface at Re = 750 ∼
800. They are transient structures which later will be covered by the upstream turbulent
region.

The temporal power spectrum of the azimuthal velocities for wavenumber component
68 at z = 1.3 and Re = 610 is shown in figure 9. The spectrum is calculated using 750 data
points of T = 2.5∼ 5.5, thus the resolution of the temporal wavenumber becomes 1/3. The
data is same as what a hot wire would measure in an experiment. The horizontal axis in
the figure indicates the temporal wavenumber per one rotation of the disk. Henceforward,
this temporal wavenumber is called the frequency. The frequency of the wavenumber
component 68 measured in the laboratory frame is 52. The frequency in the rotating frame
can be calculated by subtracting the wavenumber component from the frequency in the
laboratory frame, i.e. 52−68 = −16. This result shows that the 68 spiral vortices are not
stationary with respect to the rotating disk, but are travelling in the azimuthal direction.
In addition, this value of −16 is very close to the frequencies of wavenumber component
68 in the linear simulation of Appelquist et al. (2015a), the nonlinear simulation of
Appelquist et al. (2016b) and the theoretical prediction of Lingwood (1995), which are
−15.86 ∼ −15.96, −15.64 and −15.56, respectively.

3.2. Computation in the 2π/32 domain

The growth of impulsive disturbance excited at Re ≈ 600 is also studied using a
computational domain larger in the azimuthal direction, 2π/32, because this larger
domain can handle also the circumferential wavenumber 32, corresponding to 32 spiral
vortices for the whole disk. The number 32 is the most likely number of spiral vortices
found in the experiments (Kobayashi et al. 1980; Malik et al. 1981; Jarre et al. 1995;
Imayama et al. 2013). The flow field is disturbed for a very short period at Re ≈ 600, as
a fluctuation of the w component velocity fluctuation with a circumferential wavenumber
of 32. Two waves, namely the wavenumber components 32 and 64, can reside in the
azimuthal direction in this computational domain. The results are shown in figure 10(a).
The spatio-temporal diagram of log(vrms) in the case of 2π/32 region computation is
similar to those in the case of the 2π/68 region computation shown in figure 7(a). The
disturbance is first convected downstream, but gradually stops moving. After the flow
field settles down, the starting point of the fully-turbulent region can be found around
Re = 650, as in figure 7. This demonstrates that the edge of the turbulent region does
not change regardless of the size of the computational domain in the azimuthal direction,
2π/32 or 2π/68. However, several differences can be found between the two diagrams. For
example, the contour lines in the low Re region oscillate considerably only in the 2π/32
case. In addition, the behaviour of the contour lines is different before the flow field settles
down. Figures 10(b) and (c) show the diagrams for the wavenumber components 32 and
64, respectively, extracted from figure 10(a) using a discrete Fourier transformation.
Please note that the flow field is excited by the wavenumber 32-component, so the
64-component is the harmonic of the forcing wavenumber. The diagram of the 64-



12 K. Lee, Y. Nishio, S. Izawa and Y. Fukunishi

Figure 8. Isosurface of Q = 50 at T = 0.02, 0.1, 0.4 and 5.5 for the ordinary mesh 2π/68
region computation case.
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Figure 9. Frequency spectrum of v at z = 1.3 and Re = 610 for the wavenumber 68
component, using the data of 2.5 ∼ 5.5 rotations.

Figure 10. Spatio-temporal development of log(vrms) at z = 1.3 for the 2π/32 region
computation case. (a) Original flow field including all wave-number components. Filtered flow
fields for (b) wave-number component 32 and (c) wave-number component 64.

component is quite similar to that of 2π/68 region computation, while the diagram
of the subharmonic 32-component (figure 10(b)) is noisy at all times. This result shows
that the noisy nature of the low Re field of figure 10(a) derives from the wavenumber
32-component. It can also be observed that the spatial growth rate of the 32-component
is lower than that of the 64-component.

Vortical structures at T = 3.5 are shown in figure 11. Two spiral vortices can be clearly
observed on the upstream side of the turbulent region in both the original flow field. It
is obvious that the flow field is governed by the 64-component, although it is the 32-
component that was introduced into the flow field. Figure 12 shows the color maps of
log |v| corresponding to each wavenumber component at T = 3.5, which is the azimuthal
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Figure 11. Isosurfaces of Q = 50 at T = 3.5 for the 2π/32 region computation case.

Figure 12. Color maps of log |v| at z =1.3 and T = 3.5 for: (a) bandpass filtered by
32-component, and (b) filtered by 64-component.
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Figure 13. Frequency spectra of v at z = 1.3 and Re = 610, for T = 0.5 ∼ 3.5.

component of velocity fluctuation, at z=1.3 and T = 3.5. Because the absolute value of
v is shown, one spiral vortex appears as two-finger-like patterns in the figure. In the Re
= 600 ∼ 660 region of figure 12(a), which is the 32-component field, a two-finger-like
pattern corresponding to the single spiral vortex can be observed. In contrast, in figure
12(b), which is the 64-component field, a four-finger-like pattern can be observed for the
wide range of Re = 530 ∼ 660.

Figure 13 shows the temporal power spectra of azimuthal velocity for wavenumber
component 32 and wavenumber component 64, measured at z = 1.3 and Re = 610. The
data are from T = 0.5 ∼ 3.5. The wavenumber component 64 has the frequency of 50.33,
which is close to the frequency of the wavenumber component 68 in the 2π/68 region
computation. Because the value of the wavenumber and the frequency do not match,
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the 64 spiral vortices are travelling. On the other hand, the wavenumber component 32
peaks at the frequency of 32, indicating that it is stationary. The 32 spiral vortices in
figure 12(a) have the same characteristics as spiral vortices found in the experiments. It
should be noted that the power of the 32-component is an order of magnitude lower than
that of the 64-component, which shows that the flow field is dominated by the travelling
mode 64-component which grows by the global instability.

3.3. Self-sustained system

In our computations, although the disturbance is given only at the start (T < 0.06),
the flow field is self-sustained. It is therefore likely that a vibration source is present
somewhere in the flow field. From a theoretical point of view, it is believed that the
upstream spiral pattern is maintained by a stationary front of elephant global modes
located at the transition radius from local convective to absolute instabilities, around
Re = 507, when the external forcing is absent. Pier (2007) showed that, if the localized
periodic forcing is applied in the convectively unstable region, the naturally selected
nonlinear global mode can be suppressed and replaced by the incoming finite-amplitude
perturbations. Appelquist et al. (2016b) suggested that the global nonlinear flow is
governed by the absolute instability properties at Re = 582.8, not 507, and the frequency
of the absolute instability mode is triggered by the presence of downstream turbulence. In
this section, the relation between the upstream velocity fluctuations at Re < 582.8, which
are the spiral vortices, and the downstream turbulent region at Re > 650 is investigated.
The search for the location of the vibration source of the self-sustained structure of the
rotating disk is pursued, and its relation to the elephant mode is discussed. We attempt
removing the turbulent region by two different methods which will be later explained.
The flow field at T = 5 of the 2π/68 case, where 68 spiral vortices are present, is used
as the target for the investigation.

In the first attempt, the velocity fluctuations downstream of Re = 630 are artificially
damped by gradually changing the intensity of the sponge function λ in equation (2.14)
from T = 5.5 until T = 5.75, as shown in figure 14. The gradual change is intended to
avert the impact of the abrupt change in the flow field. The original starting point of
the sponge region was Re = 810. The result is shown in figure 15(b). The reference case
without any damping schemes is also shown in (a) for comparison. The turbulent region
that existed in the Re > 645 region has been effectively damped by extending the sponge
region inward to Re = 630. In addition, the velocity fluctuation distribution becomes
steady at around T = 5.8. It is obvious that removing the downstream turbulent region
had a small effect on the flow field upstream of Re < 590.

In the second attempt, the turbulent region in Re > 645 is removed in a milder way. A
symmetric boundary condition, ∂(Ũ+ ũ)/∂z = 0, ∂(Ṽ + ṽ)/∂z = 0 and (W̃ + w̃) = 0, i.e.,
the slip condition, is applied at the wall for theRe > 630 region. The result shown in figure
15(c) indicates that this is also a very effective way to suppress turbulence. Unlike the
method using the extended sponge region, the velocity fluctuation is not forced to damp
downstream, so it nearly keeps its strength until the end of the computational region. As
in the first attempt, removing the downstream turbulent region had a surprisingly small
effect on the flow field upstream of Re < 590. Viaud et al. (2008) observed a nonlinear
self-sustained mode in a source-sink flow between two rotating disks. The spiral vortices
were sustained without downstream turbulence, which is similar to this study. They
pointed out that an elephant mode arising at the upstream boundary of the absolute
domain plays the role of a wavemaker triggering a saturated wave downstream whose
frequency is determined at the local absolute frequency at this boundary.

In order to clarify the effect of downstream turbulence on the upstream global mode,



16 K. Lee, Y. Nishio, S. Izawa and Y. Fukunishi

0

out,max = 15

out,max = 30

610 630 660 810 830 853

T=5.5

T=5.5625

T=5.625

T=5.6875

T=5.75

Re

Figure 14. Time variation of sponge function λ.

Figure 15. Spatio-temporal development of log(vrms) at z = 1.3 for (a) the reference case
without any damping schemes, (b) the damping case with an expanded sponge region and (c)
with a slip condition. Black solid line in (b, c) indicates the starting point of the expanded
sponge region and the slip boundary condition region, respectively. Black dotted line in (b, c)
divides the sponge region, or the slip boundary region from the normal calculation region.

we performed an additional simulation in which the slip condition was applied from the
beginning of the computation to the region of Re > 630. The maximum amplitude of
initial disturbance, wa,max, was lowered to 0.005V so that turbulent transition would not
take place. Other conditions are same as the ordinary mesh 2π/68 computation in table
1. The result is shown in figure 16. The initial disturbance is convected downstream and
away from the computational domain without generating a turbulent region. Meanwhile,
velocity fluctuations grow in the globally unstable region region. It clearly shows that
the velocity fluctuation field in the upstream is sustained regardless of the presence of a
downstream turbulence. Also, the spatial variations of the azimuthal velocity fluctuation



Effect of downstream turbulent region on spiral vortex structures 17

T

Figure 16. Spatio-temporal development of log(vrms) at z = 1.3 when the slip condition is
applied from the beginning of the computation, T = 0. Black dotted line divides the slip
boundary region from the normal calculation region.
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Figure 17. Comparison of the flow fields at the steady state: (a) RMS values of azimuthal
velocity fluctuation vrms in the z = 1.3 plane at T = 6.5; (b) frequency spectra of v at z = 1.3
and Re = 610 calculated over the last one rotation. The cross-shaped marks indicate when the
sponge region is placed in Re > 630 region after T = 5.5, and the square marks indicate when
the slip boundary condition is applied instead. In the figure, the data at T = 15 when the slip
condition is used from T = 0 are also shown by circles. The reference case without any damping
schemes is shown by a solid line.

intensity, vrms, after the flow field has reached the steady state, are compared in figure
17(a). The cross-shaped and square marks correspond to the final data at T = 6.5
in figure 15(b) and (c). The original flow field without any damping schemes is also
shown by a solid line in figure 15(a). A fully-developed turbulent region is observed as a
fluctuating part around vrms ≈ 0.1 in the figure. All these results are identical to the case
when the slip condition is applied from the beginning of the computation. Also, figure
17(b) shows that their temporal power spectra of the azimuthal velocities have a same
peak frequency of 52 which is the frequency of the travelling global mode of wavenumber
component 68. These results indicate that the origin of upstream global mode velocity
fluctuations cannot be attributed to the turbulent field downstream.

The relation between the upstream spiral structures and the downstream elephant
mode is examined in detail by changing the starting point of the area where the slip
condition is applied. Figure 18 shows the spatial growth rate of vrms in the radial direction
at T = 7, when the slip condition is applied after T = 5.5 to the region of Re > 630,
Re > 610, Re > 600 or Re > 580, and the turbulence is maintained. The result of
linear simulation based on the parallel-flow assumption is also shown in the figure. In
all cases, the growth rates of azimuthal velocity fluctuations monotonically decrease as
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Figure 18. Spatio growth rate of vrms for each slip condition case at T = 7. Dotted line shows
the result of local linear simulation.

the Reynolds number increases and fall below that of the local linear simulation value.
The point intersecting to the local linear simulation result is at Renl = 573.43 when the
downstream turbulence is maintained without the damping schemes, and for the cases
when the slip condition starts at Re = 611 or 631. The curve shifts downward and the
intersection moves to Renl = 571.30 or 553.48 when the slip condition starts further
upstream. The flow field is divided by this intersecting point into the upstream linear
region and the downstream nonlinear region. It should be noted here that these values
of Renl are almost independent of time except for a short period right after the initial
perturbation was added, whose reason is because strong perturbations were added to
quickly obtain a steady state.

The temporal developments of vrms at Re = 560 and z = 1.3 changing the location
where the slip condition starts are shown in figure 19. The data up to T = 8 for the case
when the slip condition starts at Re = 611 is shown. The RMS values at T = 5.5 are used
to normalize the profiles. When the turbulent region is sustained, the RMS value stays at
around the value of 1.0. Similar result is found for the case when the slip condition starts
at Re = 631, though the RMS value slightly rises with time. However, when the slip
condition starts at Re = 611, 601 or 581, the RMS values decrease with time, showing
that the velocity fluctuations cannot be maintained under these conditions.

Pier et al. (1998) identified a stationary front of the elephant mode, which was referred
as the steep global mode in the literature, as the upstream boundary of the absolutely
unstable domain in the context of the supercritical complex Ginzburg-Landau equation
with coefficients slowly varying in space for a doubly infinite domain. As mentioned above,
Appelquist et al. (2016b) deduced the critical Reynolds number for the global nonlinear
modes in rotating-disk flows, Recg = 582.8, from the comparison of the growth rates
in their nonlinear simulations and the local theory. Also, Viaud et al. (2011) observed
a direct transition to turbulence through an elephant global mode cascade in a double-
facing-discs configuration, in which the primary stationary front was already nonlinearly
and globally unstable when it saturated. However in our present research, except for
the Re = 631 case, the stationary front of elephant global modes cannot be present
because the velocity fluctuations decrease with time. When the turbulence is maintained
or the slip condition starts at Re = 631, the elephant mode arises at around Re =
573.4, which is given as a convergent value of Renl for T → ∞. Our results in figures
18 and 19 also suggest that the self-sustained system is not always formed even if the
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Figure 19. Temporal development of vrms for each slip condition case at Re = 560. All the
profiles are normalized by the RMS value at z = 1.3 and T = 5.5.

nonlinearity becomes predominant in the globally unstable region. And, the fact that the
flow field cannot be sustained when the slip region appears upstream of Re = 611 strongly
indicates that the region of 611 ⩽ Re < 631, just upstream of the fully turbulent region,
is necessary for the global mode velocity fluctuation to self-sustain itself. Consequently,
we suggest that the source of vibration for the global instability, i.e. the vibration source,
exists between Re = 611 and Re = 631, and not at the location of the stationary front
of the elephant global modes.

4. Conclusions

Direct numerical simulations were performed to investigate the role of the turbulent
region on the self-sustaining mechanism of the spiral vortex structures of rotating-disk
flows. Two computational domains with different azimuthal sizes, 2π/68 and 2π/32, were
computed. A disturbance was given in the form of a wall-normal short-duration suction
and blowing at Re = 598 ∼ 602, which was in the globally unstable region. The azimuthal
wavenumber of the disturbance was chosen so that it matched the azimuthal wavenumber
of the computational domain, and relatively large amplitude was given as a disturbance
to quickly establish a wavy structure in the flow field.

When the azimuthal size of the computational domain was 2π/68, our flow field was in
good agreement with the numerical results of Appelquist et al. (2016b). The disturbance
grew while flowing down in the radial direction, and a turbulent region appeared at
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around Re = 640 ∼ 650. Travelling spiral vortices were also formed in the Re = 590 ∼
640 region, which was upstream of the turbulent region.

In the computation of a wider computational domain of 2π/32, the flow field was
investigated by extracting the wavenumber 32 and 64 components. The pattern of the
wavenumber 64-component was quite similar to the pattern found in the narrower domain
case of 2π/68. Travelling spiral vortices of the 64-component were found to be much
stronger and dominant compared to the 32-component.

In order to clarify the role of the turbulent region, the velocity fluctuations in that
region were artificially suppressed after the flow field of 2π/68 reached a steady state.
Three methods were tested. As the first method, the velocity fluctuations downstream
of Re > 630 were damped using the sponge region. The turbulent region, which existed
outside Re = 640 ∼ 650, completely disappeared by the damping, and the velocity
fluctuations were attenuated by the action. However, the flow field upstream of Re < 590
showed no difference. As the second method, a slip condition was applied at the wall for
Re > 630. In this case, the turbulent region disappeared, but the velocity fluctuations
did not attenuate as in the former case, and the amplitude stayed almost constant for
the entire Re ≦ 630 region as a result of the action. As the third method, a slip condition
was applied for the region of Re > 630 from the beginning of the computation and the
amplitude of initial disturbance was lowered so that turbulence would not be generated.
It was shown that the flow field would become globally unstable without the presence of
the turbulent region. The results suggested that the downstream turbulent region was
dispensable for the self-sustaining mechanism.

If the outer boundary of the computation was the source of the vibration, the sponge
region would have blocked the disturbances travelling upstream in the first case, while
in the second case, the disturbances could easily travel through the slip region. The fact
that the flow field upstream of Re < 590 was not affected by the control implied that
the outer boundary was unlikely the source of the vibration.

The starting point to apply the slip condition was changed in order to investigate the
existence and the location of the vibration source for the velocity fluctuations which grew
by the global instability. When the slip condition was applied at Re > 610, Re > 600 or
Re > 580, the flow fields could not be sustained by the global instability anymore. The
results indicated that the location of the vibration source was located between Re = 611
and Re = 631.
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