178 research outputs found

    Roles of participation in social activities in the association between adverse childhood experiences and health among older Japanese adults

    Get PDF
    Adverse childhood experiences (ACEs) have shown strong associations with later-life health such as depression and subjective health. Social participation is also associated with later-life health but it is unclear to what extent this could contribute to alleviating harmful impacts of ACEs, nor is it clear whether ACEs are themselves associated with later-life social participation. Thus, this study aims to understand: (1) the influence of ACEs on social participation in later life and (2) whether social participation can alleviate the harmful influences of ACEs on depression and subjective health among Japanese older adults. Data were from 5,671 Japanese older adults (aged 65+) in surveys in 2013 and 2016 as part of the Japan Gerontological Evaluation Study (JAGES). Logistic regression analyses were conducted to estimate the relations between ACEs and later-life social participation, adjusting for potential confounders and mediators. Inverse probability weighting was used to estimate average effects of ACEs on later-depression and subjective health, adjusting for potential confounders, and these were compared against controlled direct effect (CDE) estimates from marginal structural models based on all respondents experiencing weekly social participation. We found that ACEs were associated with reduced later-life social participation (OR for >1 ACEs = 0.88, 95% CI = 0.79, 0.99). The estimated effect of ACEs on depression ( adjusted total effect estimates: OR = 1.23, 95% CI = 1.05, 1.45) was marginally alleviated in estimates assuming weekly social participation for everyone (CDE = 1.18, 95% CI = 0.98, 1.43). A similar tendency was seen for poor subjective heath. Negative impacts of ACEs on depression may be marginally mitigated through social participation, but mitigating effects were moderate. Further investigation on other potential later-life mitigating factors is needed

    Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    Get PDF
    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies

    Investigation of the feasibility of a simple method for verifying the motion of a binary multileaf collimator synchronized with the rotation of the gantry for helical tomotherapy

    Get PDF
    In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general-purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as "open" from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as "closed", was 0.919. The leaf open error identified by our method was -1.3 +/- 7.5%. The 68.6% of observed leaves were performed within +/- 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with -3.4 +/- 8.0% leaf open error. The 77.5% of observed leaves were performed within +/- 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool.ArticleJOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS. 13(1):27-43 (2012)journal articl

    Physical and Radiative Characteristics and Long Term Variability of the Okhotsk Sea Ice Cover

    Get PDF
    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover comes from ice concentration maps derived from passive microwave data. To understand what these satellite data represents in a highly divergent and rapidly changing environment like the Okhotsk Sea, we analyzed concurrent satellite, aircraft, and ship data and characterized the sea ice cover at different scales from meters to tens of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated how the general radiative and physical characteristics of the ice cover changes as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice represent a large fraction of the lice cover that averages about 90% ice concentration, according to passive microwave data. A rapid decline of -9% and -12 % per decade is observed suggesting warming signals but further studies are required because of aforementioned characteristics and because the length of the ice season is decreasing by only 2 to 4 days per decade

    Physical and Radiative Characteristic and Long-term Variability of the Okhotsk Sea Ice Cover

    Get PDF
    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover has been provided by ice concentration maps derived from passive microwave data. To understand what satellite data represent in a highly divergent and rapidly changing environment like the Okhotsk Sea, we take advantage of concurrent satellite, aircraft, and ship data acquired on 7 February and characterized the sea ice cover at different scales from meters to hundreds of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated the general radiative and physical characteristics of the ice cover as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice types represent a large fraction of the ice cover that averages about 90% ice concentration according to passive microwave data. These results are used to interpret historical data that indicate that the Okhotsk Sea ice extent and area are declining at a rapid rate of about -9% and -12 % per decade, respectively

    Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs

    Get PDF
    Although c-Jun NH 2 -terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-B-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4°C for 4 h followed by reperfusion at 37°C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-B qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-␣ into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation

    Full-Length Sequence of Mouse Acupuncture-Induced 1-L (Aig1l) Gene Including Its Transcriptional Start Site

    Get PDF
    We have been investigating the molecular efficacy of electroacupuncture (EA), which is one type of acupuncture therapy. In our previous molecular biological study of acupuncture, we found an EA-induced gene, named acupuncture-induced 1-L (Aig1l), in mouse skeletal muscle. The aims of this study consisted of identification of the full-length cDNA sequence of Aig1l including the transcriptional start site, determination of the tissue distribution of Aig1l and analysis of the effect of EA on Aig1l gene expression. We determined the complete cDNA sequence including the transcriptional start site via cDNA cloning with the cap site hunting method. We then analyzed the tissue distribution of Aig1l by means of northern blot analysis and real-time quantitative polymerase chain reaction. We used the semiquantitative reverse transcriptase-polymerase chain reaction to examine the effect of EA on Aig1l gene expression. Our results showed that the complete cDNA sequence of Aig1l was 6073 bp long, and the putative protein consisted of 962 amino acids. All seven tissues that we analyzed expressed the Aig1l gene. In skeletal muscle, EA induced expression of the Aig1l gene, with high expression observed after 3 hours of EA. Our findings thus suggest that the Aig1l gene may play a key role in the molecular mechanisms of EA efficacy
    corecore