110 research outputs found

    3-D Kinematics of Water Masers in the W51A Region

    Full text link
    We report proper motion measurements of water masers in the massive-star forming region W51A and the analyses of the 3-D kinematics of the masers in three maser clusters of W51A (W51 North, Main, and South). In W~51 North, we found a clear expanding flow that has an expansion velocity of ~70 km/s and indicates deceleration. The originating point of the flow coincides within 0.1 as with a silicon-monoxide maser source near the HII region W~51d. In W51 Main, no systematic motion was found in the whole velocity range (158 km/s =< V(lsr) =< -58 km/s) although a stream motion was reported previously in a limited range of the Doppler velocity (54 km/s =< V(lsr) =< 68 kms). Multiple driving sources of outflows are thought to explain the kinematics of W51 Main. In W51 South, an expansion motion like a bipolar flow was marginally visible. Analyses based on diagonalization of the variance-covariance matrix of maser velocity vectors demonstrate that the maser kinematics in W51 North and Main are significantly tri-axially asymmetric. We estimated a distance to W51 North to be 6.1 +/- 1.3 kpc on the basis of the model fitting method adopting a radially expanding flow.Comment: 20 pages, 8 figures, 8 tables, appear in the NRO report No. 564 (ftp://ftp.nro.nao.ac.jp/nroreport/PASJ-W51.pdf) and will appear in Publ. Astron. Soc. Japan, Vol. 54, No. 5 (10/25 issue

    Medial prefrontal cortex suppresses reward-seeking behavior with risk of punishment by reducing sensitivity to reward

    Get PDF
    Reward-seeking behavior is frequently associated with risk of punishment. There are two types of punishment: positive punishment, which is defined as addition of an aversive stimulus, and negative punishment, involves the omission of a rewarding outcome. Although the medial prefrontal cortex (mPFC) is important in avoiding punishment, whether it is important for avoiding both positive and negative punishment and how it contributes to such avoidance are not clear. In this study, we trained male mice to perform decision-making tasks under the risks of positive (air-puff stimulus) and negative (reward omission) punishment, and modeled their behavior with reinforcement learning. Following the training, we pharmacologically inhibited the mPFC. We found that pharmacological inactivation of mPFC enhanced the reward-seeking choice under the risk of positive, but not negative, punishment. In reinforcement learning models, this behavioral change was well-explained as an increase in sensitivity to reward, rather than a decrease in the strength of aversion to punishment. Our results suggest that mPFC suppresses reward-seeking behavior by reducing sensitivity to reward under the risk of positive punishment

    Control System Design of an Ultra-Small Deep Space Probe

    Get PDF
    It\u27s a grand opportunity to build new small deep space probe called Shinen2, developed by Kyushu Institute of Technology (KIT), in corporation with the different companies and institutions of engineering in Kagoshima University (Japan), NASA Johnson Space Center, was launched by the rocket H-IIA of Japan Aerospace Exploration Agency (JAXA) with Hayabusa 2, on December 3, 2014 in Tanegashima. This project involves Japanese students and foreigners, permitted a multi-cultural environment and an excellent tools for education. The students are in charge for the design, assembly, integration, tests of the space probe subsystems, and build-up of the existing ground stations facilities for tracking the telemetry data of Shinen2. It will enhance capacity building for the students, and scientific research for upcoming studies. The main approach to carry out the main mission of space probe. In parallel, to develop each subsystem of Shinen2: structure design, system bus architecture including the Communication Control Unit CCU, Power Control Unit PCU specifications, and new Particle Pixel Detector PPD for deep space radiation exploration. The development period for the space probe was only one year; it was extremely a short term. The mass budget and size were strictly limited while requiring a higher reliability. This paper describe a control system design for a small deep space probe which was developed to implement different missions and to satisfy the various requirements listed below.3rd International Conference on Power and Energy Systems Engineering, CPESE 2016, 8-12, September 2016, Kitakyushu, Japa

    Ratio of von Willebrand factor propeptide to ADAMTS13 is associated with severity of sepsis.

    Get PDF
    Von Willebrand factor (VWF)-cleaving protease (ADAMTS13) cleaves ultralarge VWF (ULVWF) secreted from endothelium and by which is regulating its physiologic function. An imbalance between ULVWF secretion and ADAMTS13 level occurs in sepsis and may cause multiple organ dysfunction. We evaluated the association between the VWF-propeptide (VWF-pp)/ADAMTS13 ratio and disease severity in patients with severe sepsis or septic shock. In 27 patients with severe sepsis or septic shock and platelet count less than 120,000/μL, we measured plasma VWF, VWF-pp, and ADAMTS13 levels on hospital days 1, 3, 5, and 7. The VWF-pp/ADAMTS13 ratio was increased greater than 12-fold in patients with severe sepsis or septic shock on day 1 and remained markedly high on days 3, 5, and 7 compared with normal control subjects. The VWF-pp/ADAMTS13 ratio significantly correlated with Acute Physiology and Chronic Health Evaluation II score on days 1 and 5; Sepsis-related Organ Failure Assessment score on days 1, 3, and 5; maximum Sepsis-related Organ Failure Assessment score and tumor necrosis factor α level on days 1, 3, 5, and 7; and creatinine level on days 1, 5, and 7. Patients with greater than stage 1 acute kidney injury had significantly higher VWF-pp/ADAMTS13 ratio than patients without acute kidney injury. In summary, the VWF-pp/ADAMTS13 ratio was associated with disease severity in patients with severe sepsis or septic shock and may help identify patients at risk for multiple organ dysfunction by detecting severe imbalance between ULVWF secretion and ADAMTS13 level.博士(医学)・乙第1318号・平成25年7月22

    Regulatory T Cells in Type 1 Autoimmune Pancreatitis

    Get PDF
    Autoimmune pancreatitis (AIP) is a newly recognized pancreatic disorder. Recently, International Consensus Diagnostic Criteria for AIP (ICDC) was published. In this ICDC, AIP was classified into Type 1 and Type 2. Patients with Type 1 AIP have several immunologic and histologic abnormalities specific to the disease, including increased levels of serum IgG4 and storiform fibrosis with infiltration of lymphocytes and IgG4-positive plasmacytes in the involved organs. Among the involved organs showing extrapancreatic lesions, the bile duct is the most common, exhibiting sclerosing cholangitis (IgG4-SC). However, the role of IgG4 is unclear. Recently, it has been reported that regulatory T cells (Tregs) are involved in both the development of various autoimmune diseases and the shift of B cells toward IgG4, producing plasmacytes. Our study showed that Tregs were increased in the pancreas with Type 1 AIP and IgG4-SC compared with control. In the patients with Type 1 AIP and IgG4-SC, the numbers of infiltrated Tregs were significantly positively correlated with IgG4-positive plasma cells. In Type 1 AIP, inducible costimulatory molecule (ICOS)+ and IL-10+ Tregs significantly increased compared with control groups. Our data suggest that increased quantities of ICOS+ Tregs may influence IgG4 production via IL-10 in Type 1 AIP

    Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome

    Get PDF
    Enlarged vestibular aqueduct (EVA) is one of the most commonly identified inner ear malformations in hearing loss patients including Pendred syndrome. While biallelic mutations of the SLC26A4 gene, encoding pendrin, causes non-syndromic hearing loss with EVA or Pendred syndrome, a considerable number of patients appear to carry mono-allelic mutation. This suggests faulty pendrin regulatory machinery results in hearing loss. Here we identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4. EphA2 forms a protein complex with pendrin controlling pendrin localization, which is disrupted in some pathogenic forms of pendrin. Moreover, point mutations leading to amino acid substitution in the EPHA2 gene are identified from patients bearing mono-allelic mutation of SLC26A4. Ephrin-B2 binds to EphA2 triggering internalization with pendrin inducing EphA2 autophosphorylation weakly. The identified EphA2 mutants attenuate ephrin-B2- but not ephrin-A1-induced EphA2 internalization with pendrin. Our results uncover an unexpected role of the Eph/ephrin system in epithelial function

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore