13 research outputs found
Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex
The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified endogenous exocyst complexes from Saccharomyces cerevisiae and showed that they are stable and consist of all eight subunits with equal stoichiometry. Using a combination of biochemical and auxin induced-degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer and demonstrated that several known exocyst-binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex by using negative-stain electron microscopy; our results indicate that the exocyst exists predominantly as a stable, octameric complex with an elongated architecture that suggests that the subunits are contiguous helical bundles packed together into a bundle of long rods
The Enterokine Fibroblast Growth Factor 15/19 in Bile Acid Metabolism
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21, and FGF23, play a key role in whole-body homeostasis. In particular, FGF19 is a postprandial hormone regulating glucose homeostasis, glycogen and protein synthesis, and primary bile acid (BA) metabolism. In the ileum, BA-dependent farnesoid X receptor (FXR) activation induces the production of FGF19, which reaches the liver through the portal system where it represses the expression of CYP7A1, the rate-limiting enzyme of hepatic de novo BAs synthesis. Dysregulation of BA levels associated with alteration in FGF19 level has been depicted in different pathological conditions of the gut-liver axis. Furthermore, FGF19 exploits strong anti-cholestatic and anti-fibrotic activities in the liver. However, native FGF19 seems to retain peculiar hepatic pro-tumorigenic actions. Recently engineered FGF19 analogues have been recently synthetized, with fully retained BA regulatory activity but without intrinsic pro-tumoral action, thus opening bona fide novel pharmacological strategy for the treatment of gut-liver axis diseases
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically
Renal Drug Transporters and Drug Interactions.
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers