11,832 research outputs found
(2,0) Chern-Simons Supergravity Plus Matter Near the Boundary of AdS_3
We examine the boundary behaviour of the gauged N=(2,0) supergravity in D=3
coupled to an arbitrary number of scalar supermultiplets which parametrize a
Kahler manifold. In addition to the gravitational coupling constant, the model
depends on two parameters, namely the cosmological constant and the size of the
Kahler manifold. It is shown that regular and irregular boundary conditions can
be imposed on the matter fields depending on the size of the sigma model
manifold. It is also shown that the super AdS transformations in the bulk
produce the transformations of the N=(2,0) conformal supergravity and scalar
multiplets on the boundary, containing fields with nonvanishing Weyl weights
determined by the ratio of the sigma model and the gravitational coupling
constants. Various types of (2,0) superconformal multiplets are found on the
boundary and in one case the superconformal symmetry is shown to be realized in
an unconventional way.Comment: 28 pages, latex, references adde
Convergence of the Gaussian Expansion Method in Dimensionally Reduced Yang-Mills Integrals
We advocate a method to improve systematically the self-consistent harmonic
approximation (or the Gaussian approximation), which has been employed
extensively in condensed matter physics and statistical mechanics. We
demonstrate the {\em convergence} of the method in a model obtained from
dimensional reduction of SU() Yang-Mills theory in dimensions. Explicit
calculations have been carried out up to the 7th order in the large-N limit,
and we do observe a clear convergence to Monte Carlo results. For the convergence is already achieved at the 3rd order, which suggests that
the method is particularly useful for studying the IIB matrix model, a
conjectured nonperturbative definition of type IIB superstring theory.Comment: LaTeX, 4 pages, 5 figures; title slightly changed, explanations added
(16 pages, 14 figures), final version published in JHE
Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics
In the string/gauge duality it is important to understand how the space-time
geometry is encoded in gauge theory observables. We address this issue in the
case of the D0-brane system at finite temperature T. Based on the duality, the
temporal Wilson loop operator W in gauge theory is expected to contain the
information of the Schwarzschild radius R_{Sch} of the dual black hole geometry
as log = R_{Sch} / (2 pi alpha' T). This translates to the power-law
behavior log = 1.89 (T/lambda^{1/3})^{-3/5}, where lambda is the 't Hooft
coupling constant. We calculate the Wilson loop on the gauge theory side in the
strongly coupled regime by performing Monte Carlo simulation of supersymmetric
matrix quantum mechanics with 16 supercharges. The results reproduce the
expected power-law behavior up to a constant shift, which is explainable as
alpha' corrections on the gravity side.Comment: REVTeX4, 4 pages, 1 figur
Particle Energization in an Expanding Magnetized Relativistic Plasma
Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the
relativistic expansion of a magnetized collisionless plasma into a vacuum, we
report a new mechanism in which the magnetic energy is efficiently converted
into the directed kinetic energy of a small fraction of surface particles. We
study this mechanism for both electron-positron and electron-ion (mi/me=100, me
is the electron rest mass) plasmas. For the electron-positron case the pairs
can be accelerated to ultra-relativistic energies. For electron-ion plasmas
most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical
Review Letter
On particle acceleration and trapping by Poynting flux dominated flows
Using particle-in-cell (PIC) simulations, we study the evolution of a
strongly magnetized plasma slab propagating into a finite density ambient
medium. Like previous work, we find that the slab breaks into discrete magnetic
pulses. The subsequent evolution is consistent with diamagnetic relativistic
pulse acceleration of \cite{liangetal2003}. Unlike previous work, we use the
actual electron to proton mass ratio and focus on understanding trapping vs.
transmission of the ambient plasma by the pulses and on the particle
acceleration spectra. We find that the accelerated electron distribution
internal to the slab develops a double-power law. We predict that emission from
reflected/trapped external electrons will peak after that of the internal
electrons. We also find that the thin discrete pulses trap ambient electrons
but allow protons to pass through, resulting in less drag on the pulse than in
the case of trapping of both species. Poynting flux dominated scenarios have
been proposed as the driver of relativistic outflows and particle acceleration
in the most powerful astrophysical jets.Comment: 25 pages, Accepted by Plasma Physics and Controlled Fusio
Dynamical tachyons on fuzzy spheres
We study the spectrum of off-diagonal fluctuations between displaced fuzzy
spheres in the BMN plane wave matrix model. The displacement is along the plane
of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles
classical tachyons develop and that the spectrum of these modes can be computed
analytically. These tachyons can be related to the familiar Nielsen-Olesen
instabilities in Yang-Mills theory on a constant magnetic background. Many
features of the problem become more apparent when we compare with maximally
supersymmetric Yang-Mills on a sphere, of which this system is a truncation. We
also set up a simple oscillatory trajectory on the displacement between the
fuzzy spheres and study the dynamics of the modes as they become tachyonic for
part of the oscillations. We speculate on their role regarding the possible
thermalization of the system.Comment: 34 pages, 4 figures; v2: 35 pages, expanded sec. 4.3, added
reference
- …