2,546 research outputs found

    Spectral Density of the Two-Impurity Anderson Model

    Full text link
    We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime, we find a quantum phase transition as function of inter-impurity hopping driven by the charge degrees of freedom. For large values of the local Coulomb repulsion, the transition is driven instead by a competition between local and non-local magnetic correlations. We find evidence that, in contrast to the usual phenomenological picture, it seems to be the bare effective exchange interactions which trigger the observed transition.Comment: 18 pages, 6 figures, submitted to J. Phys.:Condens. Matte

    Fourth-Order Perturbation Theory for the Half-Filled Hubbard Model in Infinite Dimensions

    Full text link
    We calculate the zero-temperature self-energy to fourth-order perturbation theory in the Hubbard interaction UU for the half-filled Hubbard model in infinite dimensions. For the Bethe lattice with bare bandwidth WW, we compare our perturbative results for the self-energy, the single-particle density of states, and the momentum distribution to those from approximate analytical and numerical studies of the model. Results for the density of states from perturbation theory at U/W=0.4U/W=0.4 agree very well with those from the Dynamical Mean-Field Theory treated with the Fixed-Energy Exact Diagonalization and with the Dynamical Density-Matrix Renormalization Group. In contrast, our results reveal the limited resolution of the Numerical Renormalization Group approach in treating the Hubbard bands. The momentum distributions from all approximate studies of the model are very similar in the regime where perturbation theory is applicable, U/W0.6U/W \le 0.6. Iterated Perturbation Theory overestimates the quasiparticle weight above such moderate interaction strengths.Comment: 19 pages, 17 figures, submitted to EPJ

    Low-lying excitations of the three-leg spin tube using the density-matrix renormalization group method

    Full text link
    Using the (dynamical) density-matrix renormalization group method, we study the low-energy physics of three-leg antiferromagnetic Heisenberg model where the periodic boundary conditions are applied in the rung direction. We confirm that the spin excitations are always gapped as long as the intra-ring couplings form a regular triangle. From precise finite-size-scaling analyses of the spin gap and dimerization order parameter, we also find that the spin gap is collapsed by very small asymmetric modulation of the intra-ring couplings. Moreover, the dynamical spin structure factors on the intra- and inter-leg correlations are calculated. It is demonstrated that the low-lying structure of the inter-leg spectra is particularly affected by the asymmetric modulation.Comment: 10 pages, 8 figure

    Do oil and gas platforms off California reduce recruitment of bocaccio (Sebastes paucispinis) to natural habitat? An analysis based on trajectories derived from high-frequency radar

    Get PDF
    To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known

    Dynamics in two-leg spin ladder with a four-spin cyclic interaction

    Full text link
    We study two-leg Heisenberg ladder with four-spin cyclic interaction using the (dynamical) density-matrix renormalization group method. We demonstrate the dependence of the low-lying excitations in the spin wave, staggered dimer order, and scalar-chirality order structure factors on the four-spin cyclic interaction. We find that the cyclic interaction enhances spin-spin correlations with wave vector around momentum (qx,qy)=(π2,0)(q_x,q_y)=(\frac{\pi}{2},0). Also, the presence of long-range order in the staggered dimer and scalar-chirality phases is confirmed by a δ\delta-function peak contribution of the structure factors at energy ω=0\omega=0.Comment: 4 pages, 4 figure

    Analytical and Numerical Treatment of the Mott--Hubbard Insulator in Infinite Dimensions

    Full text link
    We calculate the density of states in the half-filled Hubbard model on a Bethe lattice with infinite connectivity. Based on our analytical results to second order in t/Ut/U, we propose a new `Fixed-Energy Exact Diagonalization' scheme for the numerical study of the Dynamical Mean-Field Theory. Corroborated by results from the Random Dispersion Approximation, we find that the gap opens at Uc=4.43±0.05U_{\rm c}=4.43 \pm 0.05. Moreover, the density of states near the gap increases algebraically as a function of frequency with an exponent α=1/2\alpha=1/2 in the insulating phase. We critically examine other analytical and numerical approaches and specify their merits and limitations when applied to the Mott--Hubbard insulator.Comment: 22 pages, 16 figures; minor changes (one reference added, included comparison with Falicov-Kimball model

    Phase diagram of the one-dimensional half-filled extended Hubbard model

    Full text link
    We study the ground state of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction UU (VV) and nearest-neighbor hopping tt. In order to obtain an accurate phase diagram, we consider various physical quantities such as the charge gap, spin gap, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter using the density-matrix renormalization group technique. We confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to do a cross-check to demonstrate the validity of our estimations. Thus, our results agree quantitatively with the renormalization group results in the weak-coupling regime (U2tU \lesssim 2t), with the perturbation results in the strong-coupling regime (U6tU \gtrsim 6t), and with the quantum Monte Carlo results in the intermediate-coupling regime. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (Ut,Vt)(5.89t,3.10t)(U_{\rm t}, V_{\rm t}) \approx (5.89t, 3.10t) and the BOW phase vanishes at the critical end point (Uc,Vc)(9.25t,4.76t)(U_{\rm c}, V_{\rm c}) \approx (9.25t, 4.76t).Comment: 4 pages, 5 figure
    corecore