19 research outputs found

    Interconversion of Two GDP-Bound Conformations and Their Selection in an Arf-Family Small G Protein

    Get PDF
    SummaryADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotideβˆ—Mg2+-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg2+ has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg2+, respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram

    A Host Small GTP-binding Protein ARL8 Plays Crucial Roles in Tobamovirus RNA Replication

    Get PDF
    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5β€²-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions

    Membrane-Bound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound

    No full text
    Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity

    The Arabidopsis Cucumovirus Multiplication 1 and 2 Loci Encode Translation Initiation Factors 4E and 4G

    No full text
    The cum1 and cum2 mutations of Arabidopsis thaliana inhibit cucumber mosaic virus (CMV) multiplication. In cum1 and cum2 protoplasts, CMV RNA and the coat protein accumulated to wild-type levels, but the accumulation of the 3a protein of CMV, which is necessary for cell-to-cell movement of the virus, was strongly reduced compared with that in wild-type protoplasts. In cum2 protoplasts, the accumulation of turnip crinkle virus (TCV)-related RNA and proteins was also reduced. Positional cloning demonstrated that CUM1 and CUM2 encode eukaryotic translation initiation factors 4E and 4G, respectively. Unlike most cellular mRNA, the CMV RNA lacks a poly(A) tail, whereas the TCV RNA lacks both a 5β€²-terminal cap and a poly(A) tail. In vivo translation analyses, using chimeric luciferase mRNA carrying the terminal structures and untranslated sequences of the CMV or TCV RNA, demonstrated that these viral untranslated sequences contain elements that regulate the expression of encoded proteins positively or negatively. The cum1 and cum2 mutations had different effects on the action of these elements, suggesting that the cum1 and cum2 mutations cause inefficient production of CMV 3a protein and that the cum2 mutation affects the production of TCV-encoded proteins

    Quantitative Analyses of Schizophrenia-Associated Metabolites in Serum: Serum D-Lactate Levels Are Negatively Correlated with Gamma-Glutamylcysteine in Medicated Schizophrenia Patients

    No full text
    <div><p>The serum levels of several metabolites are significantly altered in schizophrenia patients. In this study, we performed a targeted analysis of 34 candidate metabolites in schizophrenia patients (<i>n</i>β€Š=β€Š25) and compared them with those in age- and gender-matched healthy subjects (<i>n</i>β€Š=β€Š27). Orthogonal partial least square-discriminant analysis revealed that complete separation between controls and patients was achieved based on these metabolites. We found that the levels of Ξ³-glutamylcysteine (Ξ³-GluCys), linoleic acid, arachidonic acid, D-serine, 3-hydroxybutyrate, glutathione (GSH), 5-hydroxytryptamine, threonine, and tyrosine were significantly lower, while D-lactate, tryptophan, kynurenine, and glutamate levels were significantly higher in schizophrenia patients compared to controls. Using receiver operating characteristics (ROC) curve analysis, the sensitivity, specificity, and the area under curve of Ξ³-GluCys, a precursor of GSH, and D-lactate, a terminal metabolite of methylglyoxal, were 88.00%, 81.48%, and 0.8874, and 88.00%, 77.78%, and 0.8415, respectively. In addition, serum levels of D-lactate were negatively correlated with Ξ³-GluCys levels in patients, but not in controls. The present results suggest that oxidative stress-induced damage may be involved in the pathogenesis of schizophrenia.</p></div
    corecore