153 research outputs found

    DNA barcoding of Japanese earwig species (Insecta, Dermaptera), with sequence diversity analyses of three species of Anisolabididae

    Get PDF
    Dermaptera is a polyneopteran insect order that includes more than 2,000 described species, commonly known as earwigs, that mainly inhabit tropical, subtropical and warm temperate regions. Although 40 species have been found in Japan, their distribution and habitat preferences have remained ambiguous due to sample misidentification, particularly amongst immature specimens. To overcome this problem, we sequenced and analysed the DNA barcoding region of the mitochondrial cytochrome oxidase I gene (cox1) of dermapteran species recorded from Japan. Including publicly available data, 72.5% of known Japanese dermapteran species were subjected to molecular identification. We extensively sampled three wingless species of subfamily Anisolabidinae (Anisolabididae): Anisolabis maritima, Anisolabella marginalis and Euborellia pallipes. Although these species exhibit similar habitat preferences as semi-synanthropes, A. maritima, a cosmopolitan species with the highest affinity to seashore, had significantly higher sequence diversity than the latter two species, which are considered endemic to East Asia. A similar trend was observed for (at least partly) winged cosmopolitan species of other families. Introgression with the congener Anisolabis seirokui is also suggested for A. maritima. Possible causes of the varying levels of sequence diversity are discussed

    ワカル ト ワカラナイ ノ アイダ

    Full text link

    シマラナイ アート ノ カノウセイ

    Full text link
    第2 部 コミュニケーションデザイン論集研究ノー

    Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms

    Get PDF
    The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNATyrs. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNATyr(GΨA). Structural information for TyrRS–tRNATyr complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs–tRNATyrs pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNATyr recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNATyr pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNATyr. On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms

    SLPI is a critical mediator that controls PTH-induced bone formation

    Get PDF
    Osteoclastic bone resorption and osteoblastic bone formation/replenishment are closely coupled in bone metabolism. Anabolic parathyroid hormone (PTH), which is commonly used for treating osteoporosis, shifts the balance from osteoclastic to osteoblastic, although it is unclear how these cells are coordinately regulated by PTH. Here, we identify a serine protease inhibitor, secretory leukocyte protease inhibitor (SLPI), as a critical mediator that is involved in the PTH-mediated shift to the osteoblastic phase. Slpi is highly upregulated in osteoblasts by PTH, while genetic ablation of Slpi severely impairs PTH-induced bone formation. Slpi induction in osteoblasts enhances its differentiation, and increases osteoblast–osteoclast contact, thereby suppressing osteoclastic function. Intravital bone imaging reveals that the PTH-mediated association between osteoblasts and osteoclasts is disrupted in the absence of SLPI. Collectively, these results demonstrate that SLPI regulates the communication between osteoblasts and osteoclasts to promote PTH-induced bone anabolism.Morimoto A., Kikuta J., Nishikawa K., et al. SLPI is a critical mediator that controls PTH-induced bone formation. Nature Communications 12, 2136 (2021); https://doi.org/10.1038/s41467-021-22402-x
    corecore