2,356 research outputs found

    Atomistic Dynamics of the Richtmyer-Meshkov Instability in Cylindrical and Planar Geometries

    Get PDF
    We apply molecular dynamics (MD) simulations to study the evolution of the shock-driven Richtmyer-Meshkov instability (RMI) in the cylindrical and planar geometries. Compared to traditional hydrodynamic simulations, MD has a number of fundamental advantages: it accounts for strong gradients of the pressure and temperature, and captures accurately the heat and mass transfers at the early stage (shock passage) as well as the late stage (perturbation growth) of the instability evolution. MD has no hydrodynamic limitations for spatial resolution and thermodynamic quasi-equilibrium at atomic scale. We study the instability evolution for different perturbation modes and analyze the role of the vorticity production for RMI dynamics

    Design of Scintillation-Neutron Detector for Time-of-Flight Expertments

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Spin density distribution in a partially magnetized organic quantum magnet

    Get PDF
    Polarized neutron diffraction experiments on an organic magnetic material reveal a highly skewed distribution of spin density within the magnetic molecular unit. The very large magnitude of the observed effect is due to quantum spin fluctuations. The data are in quantitative agreement with direct diagonalization results for a model spin Hamiltonian, and provide insight on the actual microscopic origin of the relevant exchange interactions.Comment: 5 pages 4 figure

    Host-microbial interactions in health and disease

    Get PDF
    published_or_final_versio

    Observation of Split Isobaric-Analog-State in 56Co through the 56Fe(p,n)56CO Reaction

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Interlayer magnetoresistance due to chiral soliton lattice formation in hexagonal chiral magnet CrNb3S6

    Full text link
    We investigate the interlayer magnetoresistance (MR) along the chiral crystallographic axis in the hexagonal chiral magnet CrNb3S 6. In a region below the incommensurate-commensurate phase transition between the chiral soliton lattice and the forced ferromagnetic state, a negative MR is obtained in a wide range of temperature, while a small positive MR is found very close to the Curie temperature. Normalized data of the negative MR almost falls into a single curve and is well fitted by a theoretical equation of the soliton density, meaning that the origin of the MR is ascribed to the magnetic scattering of conduction electrons by a nonlinear, periodic, and countable array of magnetic soliton kinks. © 2013 American Physical Society
    corecore