678 research outputs found

    Specific-heat study for ferromagnetic and antiferromagnetic phases in SrRu_{1-x}Mn_xO3

    Full text link
    Low-temperature electronic states in SrRu_{1-x}Mn_xO_3 for x <= 0.6 have been investigated by means of specific-heat C_p measurements. We have found that a jump anomaly observed in C_p at the ferromagnetic (FM) transition temperature for SrRuO_3 changes into a broad peak by only 5% substitution of Mn for Ru. With further doping Mn, the low-temperature electronic specific-heat coefficient gamma is markedly reduced from the value at x=0 (33 mJ/K^2 mol), in connection with the suppression of the FM phase as well as the enhancement of the resistivity. For x >= 0.4, gamma approaches to ~ 5 mJ/K^2 mol or less, where the antiferromagnetic order with an insulating feature in resistivity is generated. We suggest from these results that both disorder and reconstruction of the electronic states induced by doping Mn are coupled with the magnetic ground states and transport properties.Comment: 4 pages, 2 figures, submitted to the proceedings of ICM2009 (Karlsruhe

    Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments

    Get PDF
    To understand mantle dynamics, it is important to determine the rheological properties of bridgmanite, the dominant mineral in Earth’s mantle. Nevertheless, experimental data on the viscosity of bridgmanite are quite limited due to experimental difficulties. Here, we report viscosity and deformation mechanism maps of bridgmanite at the uppermost lower mantle conditions obtained through in situ stress-strain measurements of bridgmanite using deformation apparatuses with the Kawai-type cell. Bridgmanite would be the hardest among mantle constituent minerals even under nominally dry conditions in the dislocation creep region, consistent with the observation that the lower mantle is the hardest layer. Deformation mechanism maps of bridgmanite indicate that grain size of bridgmanite and stress conditions at top of the lower mantle would be several millimeters and ~105 Pa to realize viscosity of 1021–22 Pa·s, respectively. This grain size of bridgmanite suggests that the main part of the lower mantle is isolated from the convecting mantle as primordial reservoirs

    Phosphonated mesoporous silica nanoparticles bearing ruthenium complexes used as molecular probes for tracking oxygen levels in cells and tissues

    Get PDF
    Molecular oxygen plays an important role in living organisms. Its concentration and fluctuation in cells or tissues are related to many diseases. Therefore, there is a need for molecular systems that can be used to detect and quantify oxygen levels in vitro and in vivo. In this study, we synthesized phosphonated mesoporous silica nanoparticles bearing ruthenium complexes in their pores (pM-Rus) and evaluated their photophysical and biological properties. The pM-Rus were highly soluble in water and showed robust phosphorescence under hypoxic conditions, while the addition of oxygen suppressed this emission. Cellular experiments revealed that pM-Rus with a size of 100 nm showed efficient cellular uptake to emit phosphorescence in hypoxic cells. In addition, pM-Rus have negligible toxicity to cells due to the blockage of direct contact between ruthenium complexes and intracellular biomolecules and the deactivation of singlet oxygen (¹O₂) generated by photoexcitation of ruthenium complexes before leaking out of the pores. Animal experiments confirmed that pM-Rus showed robust emission at hypoxic regions in mice. Thus, pM-Rus are promising oxygen probes for living systems

    Rheology of hexagonal close-packed(hcp) iron

    Get PDF
    The viscosity of hexagonal close-packed (hcp) Fe is a fundamental property controlling the dynamics of the Earth’s inner core. We studied the rheology of hcp-Fe using high-pressure and -temperature deformation experiments with in situ stress and strain measurements. Experiments were conducted using D111-type and deformation-DIA apparatuses at pressures of 16.3–22.6 GPa, temperatures of 423–923 K, and uniaxial strain rates of 1.52 × 10−6 to 8.81 × 10−5 s−1 in conjunction with synchrotron radiation. Experimental results showed that power-law dislocation creep with a stress exponent of n = 4.0 ± 0.3, activation energy of E* = 240 ± 20 kJ/mol, and activation volume of V* = 1.4 ± 0.2 cm3/mol is dominant deformation mechanism at >∼800 K, whereas a mechanism with power-law breakdown prevails at lower temperatures. An extrapolation of the power-law dislocation creep flow law based on homologous temperature scaling suggests the viscosity of hcp-Fe under inner core conditions is ≥∼1019 Pa s. If this power-law dislocation creep mechanism is assumed to be the dominant mechanism in the Earth’s inner core, the equatorial growth or translation mode mechanism may be the dominant geodynamical mechanism causing the observed inner core structure

    Genome Analysis Revives a Forgotten Hybrid Crop Edo-dokoro in the Genus Dioscorea

    Get PDF
    忘れられた作物「えどどころ」の起原 --ゲノム解析が明らかにする青森県三八上北地域に残る栽培イモの歴史--. 京都大学プレスリリース. 2022-08-10.A rhizomatous Dioscorea crop “Edo-dokoro” was described in old records of Japan, but its botanical identify has not been characterized. We found that Edo-dokoro is still produced by four farmers in Tohoku-machi of Aomori Prefecture, Japan. Rhizomes of Edo-dokoro are a delicacy to the local people and are sold in the markets. Morphological characters of Edo-dokoro suggest its hybrid origin between the two species, D. tokoro and D. tenuipes. Genome analysis revealed that Edo-dokoro is likely originated by hybridization of a male D. tokoro to a female D. tenuipes, followed by a backcross with a male plant of D. tokoro. Edo-dokoro is a typical minor crop possibly maintained for more than 300 years but now almost forgotten from the public. We hypothesize that there are many such uncharacterized genetic heritages passed over generations by small scale farmers that await serious scientific investigation for future use and improvement by using modern genomics information

    Potential oxygen consumption and community composition of sediment bacteria in a seasonally hypoxic enclosed bay

    Get PDF
    The dynamics of potential oxygen consumption at the sediment surface in a seasonally hypoxic bay were monitored monthly by applying a tetrazolium dye (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride [INT]) reduction assay to intact sediment core samples for two consecutive years (2012–2013). Based on the empirically determined correlation between INT reduction (INT-formazan formation) and actual oxygen consumption of sediment samples, we inferred the relative contribution of biological and non-biological (chemical) processes to the potential whole oxygen consumption in the collected sediment samples. It was demonstrated that both potentials consistently increased and reached a maximum during summer hypoxia in each year. For samples collected in 2012, amplicon sequence variants (ASVs) of the bacterial 16S rRNA genes derived from the sediment surface revealed a sharp increase in the relative abundance of sulfate reducing bacteria toward hypoxia. In addition, a notable shift in other bacterial compositions was observed before and after the INT assay incubation. It was Arcobacter (Arcobacteraceae, Campylobacteria), a putative sulfur-oxidizing bacterial genus, that increased markedly during the assay period in the summer samples. These findings have implications not only for members of Delta- and Gammaproteobacteria that are consistently responsible for the consumption of dissolved oxygen (DO) year-round in the sediment, but also for those that might grow rapidly in response to episodic DO supply on the sediment surface during midst of seasonal hypoxia

    Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite

    Get PDF
     Seismic shear wave anisotropy is observed in Earth's uppermost lower mantle around several subducted slabs. The anisotropy caused by the deformation-induced crystallographic preferred orientation (CPO) of bridgmanite (perovskite-structured (Mg,Fe)SiO3) is the most plausible explanation for these seismic observations. However, the rheological properties of bridgmanite are largely unknown. Uniaxial deformation experiments have been carried out to determine the deformation texture of bridgmanite, but the dominant slip system (the slip direction and plane) has not been determined. Here we report the CPO pattern and dominant slip system of bridgmanite under conditions that correspond to the uppermost lower mantle (25 gigapascals and 1,873 kelvin) obtained through simple shear deformation experiments using the Kawai-type deformation-DIA apparatus. The fabrics obtained are characterized by [100] perpendicular to the shear plane and [001] parallel to the shear direction, implying that the dominant slip system of bridgmanite is [001](100). The observed seismic shear- wave anisotropies near several subducted slabs (Tonga-Kermadec, Kurile, Peru and Java) can be explained in terms of the CPO of bridgmanite as induced by mantle flow parallel to the direction of subduction

    Theoretical insights into the role of defects in the optimization of the electrochemical capacitance of graphene

    Get PDF
    Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level. This theoretical study investigated the effect structural defects, nitrogen and boron doping, and surface epoxy/hydroxy groups have on the electronic structure and capacitance of graphene. Density functional theory calculations reveal that the lowest energy configurations for nitrogen or boron substitutional doping occur when the dopant atoms are segregated. This elucidates why the magnetic transition for nitrogen doping is experimentally only observed at higher doping levels. We also highlight that the lowest energy configuration for a single vacancy defect is magnetic. Joint density functional theory calculations show that the fixed band approximation becomes increasingly inaccurate for electrolytes with lower dielectric constants. The introduction of structural defects rather than nitrogen or boron substitutional doping, or the introduction of adatoms leads to the largest increase in density of states and capacitance around graphene’s Dirac point. However, the presence of adatoms or substitutional doping leads to a larger shift of the potential of zero charge away from graphene’s Dirac point
    corecore