206 research outputs found
Dislocation nucleation in shocked fcc solids: effects of temperature and preexisting voids
Quantitative behaviors of shock-induced dislocation nucleation are
investigated by means of molecular dynamics simulations on fcc Lennard-Jones
solids: a model Argon. In perfect crystals, it is found that Hugoniot elastic
limit (HEL) is a linearly decreasing function of temperature: from near-zero to
melting temperatures. In a defective crystal with a void, dislocations are
found to nucleate on the void surface. Also HEL drastically decreases to 15
percent of the perfect crystal when a void radius is 3.4 nanometer. The
decrease of HEL becomes larger as the void radius increases, but HEL becomes
insensitive to temperature.Comment: 4 pages. (ver.2) All figures have been revised. Two citations are
newly added. Numerical unit is unified in the context of solid argon. (ver.
3) A minor revision including new reference
Resistivity, Hall effect and Shubnikov-de Haas oscillations in CeNiSn
The resistivity and Hall effect in CeNiSn are measured at temperatures down
to 35 mK and in magnetic fields up to 20 T with the current applied along the
{\it b} axis. The resistivity at zero field exhibits quadratic temperature
dependence below 0.16 K with a huge coefficient of the term (54
cm/K). The resistivity as a function of field shows an
anomalous maximum and dip, the positions of which vary with field directions.
Shubnikov-de Haas (SdH) oscillations with a frequency {\it F} of 100 T
are observed for a wide range of field directions in the {\it ac} and {\it bc}
planes, and the quasiparticle mass is determined to be 10-20 {\it m}.
The carrier density is estimated to be electron/Ce. In a narrow
range of field directions in the {\it ac} plane, where the
magnetoresistance-dip anomaly manifests itself clearer than in other field
directions, a higher-frequency () SdH oscillation is
found at high fields above the anomaly. This observation is discussed in terms
of possible field-induced changes in the electronic structure.Comment: 15 pages, 5 figures, to appear in Phys. Rev. B (15 Sept. 2002 issue
Universal scaling in the dynamical conductivity of heavy fermion Ce and Yb compounds
Dynamical conductivity spectra s(w) have been measured for a diverse range of
heavy-fermion (HF) Ce and Yb compounds. A characteristic excitation peak has
been observed in the mid-infrared region of s(w) for all the compounds, and has
been analyzed in terms of a simple model based on conduction (c)-f electron
hybridized band. A universal scaling is found between the observed peak
energies and the estimated c-f hybridization strengths of these HF compounds.
This scaling demonstrates that the model of c-f hybridized band can generally
and quantitatively describe the charge excitation spectra of a wide range of HF
compounds.Comment: 5 pages, 1 table, 3 figures, to appear in J. Phys. Soc. Jpn. 76
(2007
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing
Β© 2020 The Author(s) Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain
The Combined Influence of Oral Contraceptives and Human Papillomavirus Virus on Cutaneous Squamous Cell Carcinoma
The vast majority of cutaneous squamous cell carcinoma (CSCC) will occur in those with fair complexion, tendency to burn, and high ultraviolet radiation (UVR) exposure. Organ transplant recipients also are an important population at great risk for CSCC. An association has been reported between oral contraceptive (OC) use, human papillomavirus virus (HPV) and cervical cancer, and there could be a similar association for CSCC. The cutaneous HPV Ξ²-E6 protein, a close cousin of the transformative E6 protein underlying anogenital cancers, has been shown to inhibit apoptosis in response to UVR damage and stimulate morphologic transformation in rodent fibroblast cell lines. Furthermore, OC use has been shown to enhance HPV transcription and may contribute to CSCC risk through this pathway
A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo
BACKGROUND: In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the effect of CuNG on reactive oxygen species (ROS) generation and antioxidant enzymes in normal and doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox)-bearing Swiss albino mice. METHODS: The effect of CuNG has been studied on ROS generation, multidrug resistance-associated protein1 (MRP1) expression and on activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). RESULTS: CuNG increased ROS generation and reduced MRP1 expression in EAC/Dox cells while only temporarily depleted glutathione (GSH) within 2 h in heart, kidney, liver and lung of EAC/Dox bearing mice, which were restored within 24 h. The level of liver Cu was observed to be inversely proportional to the level of GSH. Moreover, CuNG modulated SOD, CAT and GPx in different organs and thereby reduced oxidative stress. Thus nontoxic dose of CuNG may be utilized to reduce MRP1 expression and thus sensitize EAC/Dox cells to standard chemotherapy. Moreover, CuNG modulated SOD, CAT and and GPx activities to reduce oxidative stress in some vital organs of EAC/Dox bearing mice. CuNG treatment also helped to recover liver and renal function in EAC/Dox bearing mice. CONCLUSION: Based on our studies, we conclude that CuNG may be a promising candidate to sensitize drug resistant cancers in the clinic
- β¦