29 research outputs found

    Plasma Xanthine Oxidoreductase Activity Associated with Glycemic Control in Patients with Pre-Dialysis Chronic Kidney Disease

    Get PDF
    Introduction: Xanthine oxidoreductase (XOR) activity plays an important role as a pivotal source of reactive oxygen species, which is associated with cardiovascular disease (CVD) events. Patients with CKD have increased risk of CVD events. In the present study, factors associated with plasma XOR activity in pre-dialysis CKD patients were investigated. Methods: In this cross-sectional study, plasma XOR activity in 118 pre-dialysis CKD patients (age 68 [57–75] years; 64 males, 26 with diabetes mellitus [DM]) was determined using a newly established highly sensitive assay based on (13C2,15N2) xanthine and liquid chromatography/triple quadrupole mass spectrometry. Results: Plasma glucose, hemoglobin A1c, and estimated glomerular filtration (eGFR) were significantly and positively correlated with plasma logarithmically transformed XOR (ln-XOR) activity. In multiple regression analyses, eGFR and hemoglobin A1c or plasma glucose were significantly, independently, and positively associated with plasma ln-XOR activity after adjusting for several confounders. Plasma XOR activity was significantly higher in CKD patients with (n = 26) than in those without (n = 92) DM (62.7 [32.3–122] vs. 25.7 [13.4–45.8] pmol/h/mL, p < 0.001). A total of 38 patients were taking uric acid-lowering drugs. Multiple regression analysis of CKD patients not administered uric acid-lowering drugs (n = 80) showed no significant association between eGFR and plasma ln-XOR activity. In contrast, association between glycemic control and plasma ln-XOR activity was significant even in CKD patients without uric acid-lowering drug treatment. Conclusions: These results indicate the importance of glycemic control in CKD patients in regard to decreased XOR, possibly leading to a decrease in CVD events

    Two coupled circadian oscillations regulate Bmal1-ELuc and Per2-SLR2 expression in the mouse suprachiasmatic nucleus

    Get PDF
    Circadian rhythms in clock genes, Bmal1 and Per2 expression were monitored simultaneously in the cultured slice of mouse suprachiasmatic nucleus (SCN) by dual bioluminescent reporters. In the neonatal SCN, the phase-relation between the Bmal1 and Per2 rhythms were significantly changed during culture. Medium exchange produced phase-dependent phase shifts (PRCm) in the Bmal1 rhythms, but not in the Per2 rhythms. As a result, the two circadian rhythms were temporally dissociated after medium exchange. In the adult SCN, the phase-relation between the two rhythms was kept constant during culture at least up to 20 cycles. The amplitude of PRCm in the adult SCN was significantly attenuated in the Bmal1 rhythm, whereas a PRCm was developed in the Per2 rhythm. The circadian period was not systematically affected by medium exchange in either of rhythms, regardless of whether it was in the neonatal or the adult SCN. Tetrodotoxin, a sodium channel blocker, enhanced the phaseresponse in both rhythms but abolished the phase-dependency. In addition, tetrodotoxin lengthened the circadian period independent of the phase of administration. Thus, the Bmal1 and Per2 rhythms in the SCN are dissociable and likely regulated by distinct circadian oscillators. Bmal1 is the component of a Bmal1/REV-ERBa/ROR loop and Per2 a Per/Cry/BMAL1/CLOCK loop. Both loops could be molecular mechanisms of the two circadian oscillators that are coupled through the protein product of Bmal1. The coupling strength between the two oscillations depends on developmental stages

    Attenuation of ligand-induced activation of angiotensin II type 1 receptor signaling by the type 2 receptor via protein kinase C

    Get PDF
    Angiotensin II (AII) type 2 receptor (AT2R) negatively regulates type 1 receptor (AT1R) signaling. However, the precise molecular mechanism of AT2R-mediated AT1R inhibition remains poorly understood. Here, we characterized the local and functional interaction of AT2R with AT1R. AT2R colocalized and formed a complex with AT1R at the plasma membrane, even in the absence of AII. Upon AII stimulation, the spatial arrangement of the complex was modulated, as confirmed by Forster resonance energy transfer (FRET) analysis, followed by AT2R internalization along with AT1R. AT2R internalization was specifically observed only in the presence of AT1R; AT2R alone could not be internalized. The AT1R-specific inhibitor losartan completely inhibited both the conformational change and the internalization of AT2R with AT1R, whereas the AT2R-specific inhibitor PD123319 partially hindered these phenomena, demonstrating that the activation of both receptors was indispensable for these effects. In addition, treatment with the protein kinase C (PKC) inhibitors inhibited the ligand-dependent accumulation of AT2R but not that of AT1R in the endosomes. A mutation in the putative phosphorylation sites of AT2R also abrogated the co-internalization of ATR2 with AT1R and the inhibitory effect of ATR2 on AT1R. These data suggest that AT2R inhibits ligand-induced AT1R signaling through the PKC-dependent pathway

    Daily life habits associated with eveningness lead to a higher prevalence of dental caries in children

    No full text
    Background/purpose: Circadian rhythm is an endogenous daily variation observed in most physiological functions including salivary secretion. Irregular lifestyle causes many diseases such as obesity and sleep disorders. The aim of this study is to examine the effects of the timings of sleep and meal on the prevalence of dental caries. Materials and methods: Study was conducted at university hospital in Japan. We asked 230 children (1-16 years old) to record the following life habits for 8 days: waking time, bedtime, mealtimes, snacking frequency, and tooth brushing frequency. We analyzed sleep habits from all data and compared dental caries and life habits using data from subjects with primary (2-7 years old) or permanent (11-16 years old) dentition period. Results: The number of dental caries assessed using the decay or filled teeth (dft) index correlated with bedtime, supper time, regularity of supper time, and snacking frequency in subjects with primary dentition. Multiple regression analysis revealed that bedtime and snacking frequency were mutually independent risk factors for dental caries. No correlations were found between the prevalence of dental caries and other measurement items. The number of caries correlated with the regularity of supper time and age in subjects with permanent dentition. Conclusion: Children with daily life habits associated with eveningness have a higher prevalence of dental caries. (C) 2019 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V

    Receptor activator of NF-κB ligand induces cell adhesion and integrin α2 expression via NF-κB in head and neck cancers

    Get PDF
    Cellular interactions with the extracellular matrix play critical roles in tumor progression. We previously reported that receptor activator of NF-κB ligand (RANKL) specifically facilitates head and neck squamous cell carcinoma (HNSCC) progression in vivo. Here, we report a novel role for RANKL in the regulation of cell adhesion. Among the major type I collagen receptors, integrin α2 was significantly upregulated in RANKL-expressing cells, and its knockdown suppressed cell adhesion. The mRNA abundance of integrin α2 positively correlated with that of RANKL in human HNSCC tissues. We also revealed that RANK-NF-κB signaling mediated integrin α2 expression in an autocrine/paracrine manner. Interestingly, the amount of active integrin β1 on the cell surface was increased in RANKL-expressing cells through the upregulation of integrin α2 and endocytosis. Moreover, the RANK-integrin α2 pathway contributed to RANKL-dependent enhanced survival in a collagen gel and inhibited apoptosis in a xenograft model, demonstrating an important role for RANKL-mediated cell adhesion in three-dimensional environments
    corecore