36 research outputs found

    Transcutaneous monitoring of hemoglobin derivatives during methemoglobinemia in rats using spectral diffuse reflectance

    Get PDF
    Significance: Untreated methemoglobinemia may cause severe hypoxemia and even death when methemoglobin levels in the blood stream exceed 70%. Although CO-oximetry can be used to monitor the response to treatment for methemoglobinemia, it is costly and requires an invasive procedure for collecting blood samples from patients. A pulse CO-oximeter with a contact probe can be used to continuously and non-invasively measure the percentage of methemoglobin, as well as the percutaneous oxygen saturation. In terms of the prevention of infectious diseases, however, it is desirable to monitor methemoglobin and oxygen saturation levels in a non-contact manner. Diffuse reflectance spectral imaging is promising as a non-contact, non-invasive, and cost-effective clinical diagnostic tool for methemoglobinemia. Aim: To demonstrate the feasibility of visible spectral diffuse reflectance for in vivo monitoring of hemoglobin derivatives and evaluating methemoglobin production and reduction as well as hypoxemia during methemoglobinemia in rats. Approach: A new imaging approach based on the multiple regression analysis aided by Monte Carlo simulations for light transport was developed to quantify methemoglobin, oxygenated hemoglobin, and deoxygenated hemoglobin using a hyperspectral imaging system. An in vivo experiment with rats exposed to sodium nitrite (NaNO2) at different doses was performed to confirm the feasibility of the method for evaluating the dynamics of methemoglobin, oxygenated hemoglobin, and deoxygenated hemoglobin during methemoglobinemia. Systemic physiological parameters, including the percutaneous arterial oxygen saturation, heart rate (HR), and pulse distention, were measured by a commercially available pulse oximeter, and the results were compared to those obtained by the proposed method. Results: Both the methemoglobin concentration and methemoglobin saturation rapidly increased with a half-maximum time of <20 min. They reached their maximal values nearly 60 min after the administration of NaNO2. Tissue oxygen saturation dramatically dropped to a minimum of 33.7% +/- 0.4%, 23.1% +/- 5.6%, 8.8% +/- 1.7%, and 9.7% +/- 5.1% on average for NaNO2 doses of 25, 37.5, 50, and 75 mg/kg, respectively. Changes in methemoglobin concentration and tissue oxygen saturation are indicative of the temporary production of methemoglobin and severe hypoxemia during methemoglobinemia. Profound increases in the HR and pulse distention implied an elevated cardiac output caused by tachycardia and the resultant increase in peripheral blood volume to compensate for the hypoxia and hypoxemia during methemoglobinemia. This was in agreement with the time course of the peripheral hemoglobin volume concentration obtained by the proposed method. Conclusions: The proposed method is capable of the in vivo non-contact simultaneous evaluation of methemoglobin levels and hypoxemia during methemoglobinemia, and that it has potential as a tool for the diagnosis and management of methemoglobinemia. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License

    In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique

    Get PDF
    Cyanosis is a pathological condition that is characterized by a bluish discoloration of the skin or mucous membranes. It may result from a number of medical conditions, including disorders of the respiratory system and central nervous system, cardiovascular diseases, peripheral vascular diseases, deep vein thrombosis, and regional ischemia. Cyanosis can also be elicited from methemoglobin. Therefore, a simple, rapid, and simultaneous monitoring of changes in oxygenated hemoglobin and deoxygenated hemoglobin is useful for protective strategies against organ ischemic injury. We previously developed a red-green-blue camera-based spectral imaging method for the measurements of melanin concentration, oxygenated hemoglobin concentration (C-HbO), deoxygenated hemoglobin concentration (C-Hb(R)), total hemoglobin concentration (C-HbT) and tissue oxygen saturation (StO(2)) in skin tissues. We leveraged this approach in this study and extended it to the simultaneous quantifications of methemoglobin concentration (C-metHb), C-HbO, C-Hb(R), and StO(2). The aim of the study was to confirm the feasibility of the method to monitor C-metHb, C-HbO, C-Hb(R), C-HbT, and StO(2). We performed in vivo experiments using rat dorsal skin during methemoglobinemia induced by the administration of sodium nitrite (NaNO2) and changing the fraction of inspired oxygen (FiO(2)), including normoxia, hypoxia, and anoxia. Spectral diffuse reflectance images were estimated from an RGB image by the Wiener estimation method. Multiple regression analysis based on Monte Carlo simulations of light transport was used to estimate C-HbO, C-HbR, C-metHb, C-HbT, and StO(2). C-metHb rapidly increased with a half-maximum time of less than 30 min and reached maximal values nearly 60 min after the administration of NaNO2, whereas StO(2) dramatically dropped after the administration of NaNO2, indicating the temporary production of methemoglobin and severe hypoxemia during methemoglobinemia. Time courses of C-HbT and StO(2), while changing the FiO(2), coincided with well-known physiological responses to hyperoxia, normoxia, and hypoxia. The results indicated the potential of this method to evaluate changes in skin hemodynamics due to loss of tissue viability and vitality

    Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

    Get PDF
    A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps) was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin

    Non-contact imaging of peripheral hemodynamics during cognitive and psychological stressors

    Get PDF
    Peripheral hemodynamics, measured via the blood volume pulse and vasomotion, provide a valuable way of monitoring physiological state. Camera imaging-based systems can be used to measure these peripheral signals without contact with the body, at distances of multiple meters. While researchers have paid attention to non-contact imaging photoplethysmography, the study of peripheral hemodynamics and the effect of autonomic nervous system activity on these signals has received less attention. Using a method, based on a tissue-like model of the skin, we extract melanin Cm and hemoglobin CHbO concentrations from videos of the hand and face and show that significant decreases in peripheral pulse signal power (by 36% +/- 29%) and vasomotion signal power (by 50% +/- 26%) occur during periods of cognitive and psychological stress. Via three experiments we show that similar results are achieved across different stimuli and regions of skin (face and hand). While changes in peripheral pulse and vasomotion power were significant the changes in pulse rate variability were less consistent across subjects and tasks

    Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

    No full text
    A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps) was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin

    Application of Optical Coherence Tomography to Monitoring of Brain Viability

    No full text

    In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique

    No full text
    Cyanosis is a pathological condition that is characterized by a bluish discoloration of the skin or mucous membranes. It may result from a number of medical conditions, including disorders of the respiratory system and central nervous system, cardiovascular diseases, peripheral vascular diseases, deep vein thrombosis, and regional ischemia. Cyanosis can also be elicited from methemoglobin. Therefore, a simple, rapid, and simultaneous monitoring of changes in oxygenated hemoglobin and deoxygenated hemoglobin is useful for protective strategies against organ ischemic injury. We previously developed a red-green-blue camera-based spectral imaging method for the measurements of melanin concentration, oxygenated hemoglobin concentration (CHbO), deoxygenated hemoglobin concentration (CHbR), total hemoglobin concentration (CHbT) and tissue oxygen saturation (StO2) in skin tissues. We leveraged this approach in this study and extended it to the simultaneous quantifications of methemoglobin concentration (CmetHb), CHbO, CHbR, and StO2. The aim of the study was to confirm the feasibility of the method to monitor CmetHb, CHbO, CHbR, CHbT, and StO2. We performed in vivo experiments using rat dorsal skin during methemoglobinemia induced by the administration of sodium nitrite (NaNO2) and changing the fraction of inspired oxygen (FiO2), including normoxia, hypoxia, and anoxia. Spectral diffuse reflectance images were estimated from an RGB image by the Wiener estimation method. Multiple regression analysis based on Monte Carlo simulations of light transport was used to estimate CHbO, CHbR, CmetHb, CHbT, and StO2. CmetHb rapidly increased with a half-maximum time of less than 30 min and reached maximal values nearly 60 min after the administration of NaNO2, whereas StO2 dramatically dropped after the administration of NaNO2, indicating the temporary production of methemoglobin and severe hypoxemia during methemoglobinemia. Time courses of CHbT and StO2, while changing the FiO2, coincided with well-known physiological responses to hyperoxia, normoxia, and hypoxia. The results indicated the potential of this method to evaluate changes in skin hemodynamics due to loss of tissue viability and vitality

    Visualization of Venous Compliance of Superficial Veins Using Non-Contact Plethysmography Based on Digital Red-Green-Blue Images

    No full text
    We propose the visualization of venous compliance (VC) using a digital red-green-blue (RGB) camera. The new imaging method, which transforms RGB values into VC, combines VC evaluation with blood concentration estimation from the RGB values of each pixel. We evaluate a non-contact plethysmography (NCPG) system for VC based on comparisons with conventional strain gauge plethysmography (SPG). We conduct in vivo measurements using both systems and investigate their differences by evaluating the VC. The results show that the two methods measure different blood vessels and that errors caused by interstitial fluid accumulation are negligible for the NCPG system, whereas SPG is influenced by such errors. Additionally, we investigate the relationship between VC and physical activity using NCPG
    corecore