6 research outputs found

    Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus

    Get PDF
    Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus.BackgroundThe detailed mechanisms of glucocorticoid action in idiopathic nephrotic syndrome and progressive glomerulonephritides have not been clearly elucidated. The pharmacological actions of glucocorticoids are mediated by their binding to an intracellular protein, the glucocorticoid receptor (GR). The determination of GR localization in normal glomerular cells is essential to elucidate the mechanisms of glucocorticoid action in various glomerular diseases.MethodsWe carried out an immunoblot examination using antihuman GR-specific antibody and homogenates of isolated normal human glomeruli and mesangial cells in culture. Immunohistochemical examinations were also performed on normal human kidney specimens at light and electron microscopic levels. The nuclear translocation of GRs elicited by ligand binding was further investigated by confocal laser-scanning microscopic inspection of freshly isolated glomeruli and mesangial cells cultured with dexamethasone.ResultsAn immunoblot examination demonstrated the presence of a 94 kDa protein, a molecular weight consistent with that of GRs, in the homogenates of glomeruli and cultured mesangial cells. By light microscopic examination, GRs were strongly detected in the nucleus and moderately in the cytoplasm of all glomerular cells, parietal and visceral epithelial cells, endothelial cells, and mesangial cells. By electron microscopic examination, the nuclear GRs of all glomerular cells were found to be diffusely distributed in the euchromatin. Additionally, the immunofluorescence intensities of nuclear GRs in isolated glomeruli and mesangial cells in culture became more intense by the addition of dexamethasone.ConclusionsOur findings suggest that all subsets of human glomerular cells definitely express the GR protein, which potentially undergoes translocation by glucocorticoids

    Association of crumbs homolog-2 with mTORC1 in developing podocyte.

    No full text
    The evidence that gene mutations in the polarity determinant Crumbs homologs-2 (CRB2) cause congenital nephrotic syndrome suggests the functional importance of this gene product in podocyte development. Because another isoform, CRB3, was reported to repress the mechanistic/mammalian target of the rapamycin complex 1 (mTORC1) pathway, we examined the role of CRB2 function in developing podocytes in relation to mTORC1. In HEK-293 and MDCK cells constitutively expressing CRB2, we found that the protein localized to the apicolateral side of the cell plasma membrane and that this plasma membrane assembly required N-glycosylation. Confocal microscopy of the neonate mouse kidney revealed that both the tyrosine-phosphorylated form and non-phosphorylated form of CRB2 commence at the S-shaped body stage at the apicolateral side of podocyte precursor cells and move to foot processes in a capillary tuft pattern. The pattern of phosphorylated mTOR in developing podocytes was similar to that of CRB2 tyrosine phosphorylation. Additionally, the lack of a tyrosine phosphorylation site on CRB2 led to the reduced sensitivity of mTORC1 activation in response to energy starvation. CRB2 may play an important role in the mechanistic pathway of developing podocytes through tyrosine phosphorylation by associating with mTORC1 activation

    Amino Acid Transporter LAT3 Is Required for Podocyte Development and Function

    No full text
    LAT3 is a Na+-independent neutral l-amino acid transporter recently isolated from a human hepatocellular carcinoma cell line. Although liver, skeletal muscle, and pancreas are known to express LAT3, the tissue distribution and physiologic function of this transporter are not completely understood. Here, we observed that glomeruli express LAT3. Immunofluorescence, confocal microscopy, and immunoelectron microscopy revealed that LAT3 localizes to the apical plasma membrane of podocyte foot processes. In mice, starvation upregulated glomerular LAT3, phosphorylated AKT1, reconstituted the actin network, and elongated foot processes. In the fetal kidney, we observed intense LAT3 expression at the capillary loops stage of renal development. Finally, zebrafish morphants lacking lat3 function showed collapsed glomeruli with thickened glomerular basement membranes. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of selective glomerular permeability. Our data suggest that LAT3 may play a crucial role in the development and maintenance of podocyte structure and function by regulating protein synthesis and the actin cytoskeleton
    corecore