235 research outputs found

    Synthesis and In Vitro Assessment of pH-Sensitive Human Serum Albumin Conjugates of Pirarubicin

    Get PDF
    In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development

    Determining the structure of a benzene7.2-silicalite-1 zeolite using a single-crystal X-ray method

    Get PDF
    An orthorhombic benzene-silicalite-1 single crystal was obtained from a monoclinic twin crystal, and the structure was determined by a single-crystal method for the first time

    MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes

    Get PDF
    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3′UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes

    An Evaluation of the Safety and Feasibility of Adenosine-assisted Clipping Surgery for Unruptured Cerebral Aneurysms: Study Protocol

    Get PDF
    The effectiveness of adenosine-induced flow arrest in surgical clipping for the cerebral aneurysms with difficulties in temporary clip placement to the proximal main trunk has been reported. This is the first clinical trial to evaluate the safety and feasibility of adenosine-assisted clipping surgery for unruptured cerebral aneurysms (UCAs) in Japan. The inclusion criteria are as follows: patients over 20 years old, patients who agree to be enrolled in this study after providing informed consent, patients who undergo clipping surgery for UCA in our institute, and patients in whom the surgeons (T.H. or I.D.) judge that decompression of the aneurysm is effective. The primary endpoint is a modified Rankin Scale (mRS) score 30 days after surgery. We plan to enroll 10 patients in this study. The original protocol of adenosine administration was established in this trial. Herein, we present the study protocol
    corecore