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1. Introduction

α1-acid glycoprotein (AGP), also called orosomucoid, is an acute phase protein in blood. AGP
is comprised of 183 amino acid residues and five N-linked oligosaccharides, with a molecular
weight of approximately 44 kDa.[1-3] The five carbohydrate chains account for about 40% of
the total mass and render AGP very soluble and confer acidic (pI~2.8-3.8) properties with a
net negative charge at physiological pH.[1, 4] While AGP is mainly biosynthesized in the liver
and secreted into the circulation,[5, 6] other organs including the heart, stomach and lungs
have been reported to synthesize and secrete AGP as well.[1] The basal level of AGP is
maintained at approximately 20 μmol/L in healthy individuals.

The biological role of AGP is not completely understood, albeit numerous in vitro and in vivo
activities such as the inhibition of platelet aggregation, modulation of lymphocyte proliferation
and drug transport, have been reported. [4, 7-10] AGP may be involved in various immuno‐
modulatory or anti-inflammation events for the following two reasons. First, the expression
of AGP is regulated by both cytokines (interleukin-1, interleukin-6 and tumor necrosis factor-
α) and glucocorticoids, unlike other acute phase proteins including fibrinogen, ceruloplasmin
and α2-microglobulin, which only by interleukin-6.[11-14] The regulation of AGP production
in human hepatocytes by glucagon, interleukin-8 and the interleukin-6 is thought to act via
mitogen-activated protein kinase (MAPK) pathway. [15] Furthermore, endogenous and
exogenous AGP was found to present at sites of inflammation in rats with inflammatory
granuloma in a study using fluorescent labeled antibody to AGP or iodine125 labeled AGP.
[16, 17] Secondly, it is well known that the plasma concentration of AGP is influenced by
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several factors. For example, stresses, inflammation, burns, infections and pregnancy etc. can
increase AGP concentration from 2 - to 10 – fold.[18-20] In addition, drugs such as phenobar‐
bital and rifampicin can also increase the concentration of AGP in plasma [21-24], via mecha‐
nisms that are independent of the inflammation pathway. [25-28]

Similar to plasma albumin, the binding and transportation of a range of endogenous and
exogenous compounds is one of the major physiological functions of AGP.[29] Therefore, drug
binding to AGP is important in terms of the correct understanding of pharmacokinetics of
drugs, especially during acute phase conditions. We have been investigating the drug-binding
specificity and pharmacokinetic properties of AGP using various biophysical and biochemical
analytical methods such as spectrophotometry and protein engineering for the past twenty
years. Furthermore, we recently succeeded in elucidating the first structure of the AGP (variant
A) and its complex with drugs.[30]

In this chapter, a brief overview of the structures of the two AGP variants, characterization of
the drug-binding, pharmacokinetic properties and the biological functions of AGP are
discussed.

2. Variants of AGP

AGP exists as three main genetic variants with the genes located in tandem on chromosome
9.[31] The expression of AGP is under the control of three adjacent genes; AGP-A, which
encodes the F1, F2 and S variants, whereas AGP-B and AGP-B’ encode the A variant.[32] All
three genes are structurally similar to each other, the AGP B/B’ genes are identical whereas the
AGP A gene contains 22 codon/base substitutions.[33] The precursor product of the AGP-A
gene is a 201 amino acid polypeptide with a secretory N-terminal signal peptide of 18 residues.
The F1 and S variants are distributed worldwide, but the F2 variant is limited to Europeans
and West Asians.[34-36] The F1, F2 and S variants are generally collectively referred as F1*S,
because they are encoded by two alleles of the ORM1 gene (AGP-A) differing in less than five
amino acids (F1 has Gln-38/Val-174; F2 has Gln-38/Met-174 and S has Arg-38/Val-174). On the
other hand, the A variant is coded by the ORM2 gene (AGP-B/B’) with approximately 20 amino
acid substitutions. The F1*S and A variants differ in their amino acid sequences by approxi‐
mately 20 residues out of a total of 183 residues (Figure 1).[37]

In most individuals, the molar ratio of the F1*S and A variants in blood typically ranges from
3:1 to 2:1.[36, 38] However, the relative proportions of the products of the AGP-A and AGP-
B/B’ genes have been found to change during acute phase reactions.[39, 40] Vékey and co-
workers reported that the molar ratio of the F1*S and A variants was in the vicinity of 8:1 in
the plasma of lymphoma, melanoma and ovarian cancer patients.[41] This means that not only
the total concentration of AGP but also the molar ratio of the F1*S and A variants may be altered
under certain types of pathological conditions. As mentioned in the introduction, the binding
and transportation of a range of endogenous and exogenous compounds is one of the major
physiological roles of AGP.[29] Furthermore, the F1*S and A variants have different drug-
binding selectivity (for details, see section “4”, “drug-binding properties”).[42] Therefore, an
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increase in AGP concentration and a change in the ratio of the AGP (F1*S and A) variants
would affect the pharmacokinetics and pharmacodynamics of drugs that are bound to AGP
during inflammation and chronic disease.

3. Structure

3.1. Glycosylation

AGP has five N-linked glycans that make up more than 40% of the total mass of the mol‐
ecule.[3] The N-glycosylation sites of AGP (Asn-15, -38, -54, -75, -85) can carry any one of
the glycans shown in Figure 2  corresponding to different  degrees of  branching (bi-,  tri-
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Figure 1. Amino acid sequence of the human AGP F1*S and A variants. Differences in the amino acid sequences of the
two variants are shown in red letters.
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and tetra-antennary).[1] These glycans are structurally heterogeneous due to the great di‐
versity of the terminating sugars. As shown in Figure 2, sialic acid is one of the common
terminating sugars,  and can be  linked to  a  galactose  residue via  either  an α2-3  or  α2-6
linkage. In addition, fucose is another known terminating sugar, which increases the ex‐
pression of the four sialyl Lewis epitope (LewisX) in both acute and chronic inflammation
conditions. [43-47] These different degrees of branching and terminating sugars cause the
heterogeneity of AGP, at least 20 types of glycan structures in AGP have been reported.
[48, 49] Halsall and coworkers investigated the distribution of oligosaccharides at the five
glycosylation  sites  in  distinct  AGP  variants  using  concanavalin  A  affinity-chromatogra‐
phy,  reverse  phase-high performance liquid chromatography (RP-HPLC) separation and
off-line MALDI-Mass spectrometric  analysis,  and found that  the percentage of  the com‐
plex glycan type at each site in the three AGP variants was different.[50] In addition, us‐
ing  capillary  liquid  chromatography-electrospray  mass  spectrometry  to  characterize  the
N-linked glycosylation pattern of AGP, Imre et al. reported that (i) triantennary complex-
type oligosaccharides predominate at  site  I  (Asn-15)  and II  (Asn-38),  (ii)  tetra-antennary
complex-type  oligosaccharides  predominate  at  sites  III  (Asn-54),  IV  (Asn-75)  and  V
(Asn-85), (iii) sites IV and V also present a higher degree of branching and/or longer an‐
tennae.[51]

The glycosylation of AGP has been reported to change under various physiological and
pathological states. [52] For example, a substantial increase in bi-antennary glycoforms as well
as an increase in the degree of 3-fucosylation occurs in the early phase of an acute-phase
reaction.[53] The AGP in cancer patients (lymphoma, ovarian tumor etc.) was found to have
increased both sialylation and fucosylation, and different relative proportions of the total
amounts of bi-, tri- and tetra-antennary sequences.[48, 54, 55] Furthermore, other pathological
conditions like chronic inflammation, pregnancy, rheumatoid arthritis, alcoholic liver cirrho‐
sis, sepsis are also known to cause changes in AGP glycosylation.[33, 56-60] Whether the
changes in AGP glycosylation have any effect on the biological functions of AGP remains
unknown. However, the presence of glycans has been reported to affect the conformational
stability and post-translational modification of the folding process of glycoproteins, which
include HIV-1 type-glycoprotein 123, quercetin 2, 3-dioxygenase, α1-antitrypsin and prion
protein.[61-64] Therefore, it is highly possible that the changes in AGP glycosylation that occur
under various pathological conditions may serve to either protect the AGP protein from
exogenous stress or facilitate various immunomodulatory or anti-inflammation events.

3.2. Protein

Highly heterogeneous carbohydrate chains of the AGP molecule makes it difficult to reveal
the 3D-structure of AGP. For structural determination by X-ray crystallography, the glycans
must be removed from AGP using enzymatic methods, but these procedures fail to completely
remove all of the glycan structures, due to following reasons; (i) AGP must be denatured and
the disulfide bonds must be reduced to allow the enzyme to digest all glycans. (ii) AGP that
is enzymatically deglycosylated is much less soluble in water, thereby resulting in uneven
digestion and may create a mixture of polymerized forms. Hence, structural data cannot be
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obtained from enzymatically deglycosylated AGP. In 2003, Kopecky et al. constructed a 3D-
structure model of AGP using a combination of vibrational spectroscopy and molecular
modeling, and concluded that folded AGP is a highly symmetrical all-beta protein that is
dominated by a single eight-stranded antiparallel beta-sheet.[65] In addition, investigations
using circular dichroism (CD) spectra and molecular modeling techniques suggest that AGP
has an inherent tendency to form an α-helical structure and that His-172 of AGP plays an
important role in the formation of an α-helical structure.[66-69]
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Figure 2. Di-, tri- and tetra-antennary N-linked complex glycans of human AGP. Dotted frame shows Sialy Lewis X.
Man, mannose; GluNAC, N-acetylglucosamine; Fuc, fucose; Sia, sialic acid; Gal, galactose; Asn, asparagines; Ser, serine;
Thr, threonine; X, any amino acid residue except proline
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Skerra and co-workers recently reported the first high-resolution X-ray structure of the
recombinant unglycosylated F1*S variant of human AGP expressed from Escherichia coli at a
1.8 Å resolution (Figure 3A). [70] In addition, we have also determined the crystal structure of
a C149R mutant of the human AGP A variant, in which a surface-exposed Cys residue was
replaced by an Arg residue (as found in F1*S variant), using expression systems in Escherichia
coli at a resolution of 2.1 Å (Figure 3B).[30] Our findings showed that the F1*S variant has a
typical lipocalin folding pattern comprised of an eight-stranded β-barrel, corresponding to
residues 24–32, 45–54, 58–68, 71–82, 86–92, 95–103, 109–114, and 123–128, respectively. On the
other hand, the A variant is composed of eight β-strands, corresponding to 23–32, 44–54, 59–
68, 71–82, 87–92, 95–102, 109–114, and 123–128, respectively. In addition, the F1*S variant
contains the characteristic α-helix comprises residues 135–148 that packs against the β-barrel,
and the A variant has four α-helices, 1–4, corresponding to 15–21, 35–42, 135–147. These results
suggest that the overall folding pattern of F1*S and A variants are the same. It is noteworthy
that the binding pocket of the F1*S variant is wide and consists of three lobes (I–III),[70] while,
in the A variant, lobes I and II are maintained, but not lobe III.[30] This difference indicates
that the binding region of the human AGP A variant is narrower than that of the F1*S variant,
a difference that may be a contributing factor to the variants distinctive ligand binding
selectivity.

4. Drug-binding properties

AGP exists in a mixture of two or three genetic variants. Herve´ et al. developed a method for
fractionating AGP variants, which permitted the binding of drugs to the A and F1*S variants
to be investigated,[71] and showed 35 chemically diverse drugs selectively binding to each
variant. [71-73] The A variant showed higher drug binding selectivity than the F1*S variant,
even though their structural properties are almost identical under physiological conditions.
[74] These findings indicate that the drug-binding selectivity of AGP is dependent on the
selectivity of the A variant, and that the F1*S variant binds a wider range of drugs. The X-ray
crystallographic structures of AGP A and F1*S variants have recently been reported by two
different groups showed that the binding pocket of the F1*S variant consists of three lobes (I–
III) whereas two lobes (I and II) are involved in the case of the A variant.[30, 70] This result
supports the view that the binding selectivity of the A variant is higher than that of the F1*S
variant reported by Herve´ et al.[71-73] The crystal structures of the human AGP A variant
complexed with disopyramide and amitriptyline, which bind to the A variant with a high
degree of selectivity, reported by Nishi et al. recently revealed conserved edge-face contacts
between the two aromatic rings on the drugs and the aromatic side chains of Phe-112 and
Phe-49.[30] In addition, Ser-114 in the A variant is involved in a water-mediated hydrogen
bond with the amide group of disopyramide. It is noteworthy that the residue at position 112
and 114 in the F1*S variant is leucine and phenylalanine, respectively. Therefore, the differ‐
ences in the amino acid residues between the A and F1*S variants of AGP at positions 112 and
114 appear to be crucial for the high selectivity of the A variant for disopyramide, amitriptyline,
and other A variant-specific drugs that contain two aromatic rings with similar configurations.
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Molecular docking and modeling using the crystal structures of the A and F1*S variants are
an alternate route to characterizing the drug-binding properties of AGP. Skerra and co-workers
modeled the mode of binding of diazepam and progesterone to the F1*S variant, and predicted
that (i) the polar diazepine ring of diazepam fits into the charged lobe II, resulting in the
formation of two hydrogen bounds between the carbonyl oxygen to the side chains of Glu-64
and Gln-66, and that the two ring nitrogens were in contact with Arg-90 and Tyr-127, respec‐
tively. (ii) progesterone fitted nicely into lobe I and both Tyr-127 and Ser-40 was crucial for its
binding.[70] Furthermore, Azad et al. characterized the binding properties of some polymyxin
antibiotics (colistin, polymyxin B, polymyxin B3, colistin methansulfonate, and colistin nona-
peptide) with AGP using a combination of biophysical techniques, and developed a molecular

(A) F1*S variant

(B) A variant

Figure 3. Figure 3 Crystal structures of the human AGP F1*S (A) and A variants (B) at a resolution of 1.8 Å and 2.1 Å,
respectively. Both illustrations were produced with PyMol using the atomic coordinates from Protein Data Bank, 3KQ0
for (A) and 3APX for (B).
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model of the polymyxin B3-AGP F1*S complex that showed the pivotal role of the N-terminal
fatty acyl chain and the D-Phe6-L-Leu7 hydrophobic motif of polymyxin B3 for binding to the
cleft-like ligand binding cavity of the AGP F1*S variant.[75] In addition to these drugs,
molecular docking models of imatinib, 6-mercaptopurine and thymoquinone, -AGP variants
complex have also been developed.[76-78]

CD and fluorescence spectrometry is also a useful tool for examining the drug-binding sites
of AGP. We found that electrostatic and hydrophobic forces have an important role in
interactions between AGP and basic drugs.[79, 80] Furthermore, the results of fluorescent
probe displacement experiments showed that basic drugs strongly displaced not only basic
probes, but also acidic probes.[81] On the other hand, acidic probes were displaced by acidic
drugs but had no effect on most of the basic probes. The results of the probe displacement
study suggest that acidic drugs do not bind to an identical binding region as basic drugs, while
acidic drugs do not share a binding region with basic drugs.

Photoaffinity labeling experiments and the use of chemically or genetically modified AGP can
provide direct evidence for the specific amino acid residue that is involved in drug binding.
The low distribution volumes of 7-hydroxystaurosporine (UCN-01), a protein kinase inhibitor
anticancer drug,[82, 83] in patients was caused, in part, by its extraordinarily high affinity and
specific binding (Ka = 108 M-1) to AGP.[84] Chemical modification of all His, Lys, Trp, and Tyr
residues of AGP by reacting them with diethylpyrocarbonate, a phenyl isocyanate, 2-hy‐
droxy-5-nitrobenzyl bromide, tetranitromethane, respectively, decreased the binding affinity
of AGP to UCN-01.[83] In particular, Trp-modified AGP showed a significant decrease in
binding. On the other hand, Zsila and Iwao used induced CD spectra and mutants of AGP to
investigate its drug-binding sites, and reported that Trp25 is also involved in the binding of
drugs to AGP.[85]

In addition, AGP mutants (W25A, W122A, and W160A)[86] photolabeled with [3H]-
UCN-01[87] revealed that only W160A showed a marked decrease in the extent of photoin‐
corporation. These results strongly suggest that Trp-160 and Trp-25 play an essential role in
the high affinity binding of UCN-01 to AGP. Furthermore, the displacement effects of propra‐
nolol, warfarin and progesterone on UCN-01-AGP binding were competitive in nature,[88]
indicating that the UCN-01 binding site on AGP is partly overlapped with the binding site for
basic drugs, acidic drugs, and steroid hormones.

Another investigation based on photoaffinity labeling experiments with [3H]-flunitrazepam,
also reported that [3H]-flunitrazepam photolabeled an amino acid residue within the sequence
of Tyr91-Arg105.[89] In addition, Kopecky et al., using Raman difference spectroscopy,
reported that Trp-122 is possibly involved in the binding of progesterone.[65] Furthermore,
Halsall et al. reported that the modification of His-97 with diethylpyrocarbonate was inhibited
in the presence of drugs that bind to AGP.[90] This finding suggests that, in addition to Trp-122,
His-97 also participates in the binding of drugs. Based on the inconsistent results obtained
from above mentioned studies, the binding sites do not appear to be completely separated,
but overlap significantly and are influenced by one another, and that AGP has a wide drug-
binding site that is common for basic, acidic and neutral drugs.
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The unexpectedly high plasma concentrations of UCN-01 after intravascular administration
in a clinical study in relation to preclinical studies (mice, rats, dogs) were found to be due to
the high-affinity binding of UCN-01 to human AGP.[84] Investigation of species differences
in the drug-binding properties of AGP is one of the important issues for the extrapolation of
drug-protein interactions from animals to humans. We previously reported that both dog and
bovine AGPs contain a basic ligand binding site and a steroid hormone binding site, which
significantly overlaps and affects each other, but do not contain an acid ligand binding site.[91]
On the other hand, the ligand binding site on human AGP consists of at least three partially
overlapping subsites: a basic ligand binding site, an acidic ligand binding site and a steroid
hormone binding site. Zsila et al. reported that chicken AGP is able to bind a broad spectrum
of ligands, indicating the existence of a broad common drug binding site.[92]

Drugs bound to AGP have been proposed to be incorporated into cells of organs and tissues
via membrane interactions.[93] The interaction of AGP with the membrane induces a structural
change in AGP, followed by the release of the bound drug. We recently reported on the
interactions of AGP with a model membrane using reverse micelles and liposomes.[68, 69] In
the interaction with liposomes, AGP was found to bind to the surface of a membrane via
electrostatic interaction. This interaction induced a structural change in AGP, which results in
a decrease in its drug-binding capacity. An interesting finding was that AGP underwent a
structural change to an α-helical form from a β-sheet form. We also found that the decrease in
drug-binding capacity caused by the interaction with the membrane was dependent on the
α-helix content of the AGP. These findings strongly suggest the existence of the AGP-mediated
transport of drugs (Figure 4). It is important, in the future, to reveal how much this system
contributes to overall drug transport into tissue.

5. Disposition

AGP is mainly biosynthesized in the liver and secreted into the blood circulation.[5, 6] In
addition to the liver, other organs including the heart, stomach and lungs etc. are also able to
synthesize and secrete AGP.[1] However, the disposition of endogenous AGP after being
secreted into the circulation is not fully understood. In 1961, Weisman et al. performed the first
pharmacokinetic study of AGP by administering 131I-labelled human AGP to convalescent
patients, and reported that the half-life of AGP in humans was approximately 5 days.[94] Bree
et al. also administered 125I-labelled human AGP (8.5 to 10 mg/patients) to seven male patients
who were admitted in the intensive care unit due to brain injuries, and reported the half-life
of AGP in humans (average half-life; 65 hour, range; 36.3-95.3 hour) was shorter than that
observed by Weisman et al..[95] In addition, they found that 60% of the administered AGP was
located within the central compartment while the remaining 40% was present in the extrava‐
scular space like albumin.[96] These data indicated that the half-life of AGP is at least 2-3 days.

Keyler et al. studied the pharmacokinetics of high-doses of human AGP in rats and concluded
that AGP could be safely cleared from the body even though the maximum serum AGP
concentration after infusion was more than twenty times the normal value.[97] Pharmacoki‐
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netic studies using mice and rabbits demonstrated that AGP was mainly distributed in the
liver.[98, 99] We also clarified that AGP was mainly incorporated into liver parenchymal cells
via a receptor-mediated pathway, and the hemoglobin β-chain located on liver plasma
membranes contributes to the intracellular uptake of AGP.[100, 101] These data suggest that
AGP is finally taken up by liver parenchymal cells via the hemoglobin β-chain and is then
degraded or eliminated from the body.

The glycans of AGP are known to be largely responsible for the pharmacokinetic proper‐
ties of the molecule, especially the elimination of AGP. The presence of glycans has been
found  to  contribute  in  preventing  accelerated  clearance  by  glomerular  filtration  in  the
kidney,  because AGP is  a  relatively small  protein of  approximately 44 kDa.  In order to
clarify  the role  of  glycans in  the  renal  elimination of  AGP,  we prepared a  recombinant
glycan-deficient  AGP by mutating the five Asn residues to Asp residues using a Pichia
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Figure 4. Proposed mechanism of AGP-mediated drug transport and drug-binding region of AGP. (modified from ref‐
erence 29)
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expression system and studied the pharmacokinetics of this recombinant glycan-deficient
AGP in  mice.[101]  The glycan-deficient  AGP was eliminated from the  blood circulation
very  rapidly,  due  to  filtration  in  the  kidney.  In  addition,  McCurdy  et  al.  also  obtained
similar results using glycan-deficient AGP in rabbits.[99]

An asialoglycoprotein receptor has been reported to be associated with the incorporation of
AGP into liver tissue.[102] Regoeczi et al. studied the pharmacokinetics of asialo-AGP in
chickens and rabbits, and suggested the possibility of the presence of a naturally occurring
terminal catabolic point of AGP that was related to hepatic uptake via a hepatic plasma
membrane receptor (an asialoglycoprotein receptor).[103] On the contrary, Ikeda et al. reported
that the pharmacokinetics of AGP did not change in mice that lacked the asialoglycoprotein
receptor compared to wild type mice.[104] In addition, the presence of a sialidase, which
digests sialic acid from glycans, has identified in lysosomes [105, 106], cytoplasm [107, 108]
and the plasma membrane [107, 109], but not in blood. These findings suggest that receptors
other than the asialoglycoprotein receptor are involved in the incorporation of AGP into
tissues. We investigated the pharmacokinetics of asialo-AGP (sialic acids removed), and
agalacto-AGP (both sialic acids and galactose removed) in mice.[98] Whilst the elimination of
111In labeled-AGP, -asialo-AGP and -agalacto-AGP from the circulation was suppressed by
excess unlabeled AGP, asialo-AGP and agalacto-AGP, respectively, interestingly, agalacto-
AGP but not asialo-AGP competed with AGP in uptake by the liver, while agalacto-AGP
competed with asialo-AGP in uptake by the liver. In addition, the results from a mice study
indicated that systemic hyaluronidase treatment decreased the initial clearance of AGP and
that AGP administration reduced the binding of hyaluromic acid binding protein to the vessel
wall of liver sinusoids. [99] These results suggest that AGP, including N-linked glycans,
interact with hyaluronan or hyaluronidase-sensitive component of the vessel wall which
influence the transendothelial passage of AGP. Based on these results, a new hepatic elimina‐
tion pathway involving at least two types of receptors, namely an asialoglycoprotein receptor
and another yet to be identified receptor, for AGP was proposed (Figure 5). This unidentified
receptor is shared with AGP, and AGP is directly taken up by the liver through such a receptor
and not via an asialoglycoprotein receptor.

The oligosaccharide chains of AGP have different degrees of branching (bi-, tri- and tetra-
antennary) that is influenced by the physiological conditions. The pharmacokinetics of AGP,
in turn, is also affected by the proportion of the bi-antennary glycans. Parivar et al. performed
the disposition of concanavalin A (Con A)-non-reactive, which contains only one bi-antennary
chains, and Con A-reactive human AGP, which contains two or more bi-antennary chains, in
normal male rats and acute phase response-activated rats induced by treatment with ethyny‐
loestradiol.[110] The clearance of both Con A-non-reactive and Con A-reactive human AGP
was significantly increased in the acute phase response-activated rats compared to normal rats.
The clearance of Con A-non-reactive human AGP was marginally higher than Con A-reactive
human AGP in the acute phase response-activated rats, but no difference was found in the
normal rats. These results indicate that the degree of branching of the glycans alters the
disposition of AGP.
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6. Biological functions

The several fold increase of AGP concentration in the circulation during an acute phase
response could influence the biological functions of the molecule in humans. [111] Although
the detailed biological functions of AGP has not been elucidated completely, the major
physiological roles of AGP reported so far involve the binding and transport of a range of
drugs and immunomodulating effects. These physiological roles of AGP have been reviewed
in section “4” and elsewhere.[1, 4] Thus, the scope of this section is limited to some interesting
observations for other roles.

Van Molle et al. found that bovine AGP with or without glycan chains inhibits the apoptosis
of hepatocytes induced by TNF/galactosamine and TNF/actinomycin D in mice via suppress‐
ing the activation of caspase 3 and 7, which is a key factor in inducing apoptosis.[112, 113] On
the contrary, Kagaya et al. reported that AGP inhibited the cell death of rat primary hepatocytes
that had been treated with a chemical toxin (bromobenzene), and the hepatoprotective effect
of AGP was lost when the sialic acid groups at the N-glycan chain terminal of AGP were
removed.[114] In addition, Karande and co-workers demonstrated the importance of sialyla‐
tion and glycan size in the manifestation of Glycodelin A for its induced apoptosis due to
accessibility to the apoptogenic region.[115, 116] These results indicate that AGP potentially
possesses anti-apoptosis or cytoprotective effects for hepatocytes which depends on both the

Secretion from liver

Glycans catabolized
by enzymes

Uptake by liver 
via receptor

Unknown receptor

Asialoglycoprotein
receptor

Parenchymal cell

AGP Agalacto-AGP Asialo-AGP

Figure 5. Proposed model of glycan dependent elimination pathway via transporter of AGP. yellow circle, mannose;
open square, N-acetylglucosamine; yellow square, sialic acid; open circle, galactose

Acute Phase Proteins150



presence/absence of glycans and the type of terminal sugar. Moreover, Buurman and co-
workers demonstrated that human AGP decreases ischemia/reperfusion-induced damage to
kidney tissue by suppressing apoptosis, the expression of TNF-α and neutrophil influx.[117,
118] They also found that AGP inhibited the activation of the complement system in the
process, and that this protective effect was not associated with the fucosylation of the glycans
of AGP. These findings indicate that AGP can be used as a potential new therapeutic inter‐
vention in the treatment of acute hepatic and renal failure, as seen after the transplantation of
ischemically injured liver and kidneys.

AGP has also been reported to have a protective effect against sepsis from gram-negative
infections.[119] Moore et al. showed that AGP interacts with the bacterial lipopolysaccharide
(LPS), which is an initiator of the acute inflammatory response associated with septic shock,
resulting in the formation of an AGP-LPS complex. This complexation by AGP neutralized the
toxicity of LPS and enhanced the clearance of LPS from the body.[120] In addition, Hochepied
et al. demonstrated that AGP was effective against a lethal infection by Klebsiella pneumonia and
Bacillus anthracis.[119, 121] These results suggested that the increased AGP expression under
conditions of an infection facilitates LPS elimination, resulting in a protective effect against
endotoxin shock derived from the infection.

The effects of AGP on erythrocyte membranes have also been reported.[122-124] Maeda et al.
showed that human AGP is bound to the surface of erythrocytes, which facilitated the passage
of erythrocytes throughout artificial membrane filters with various pore diameters under
positive pressure, and a pronounced protecting effect against hemolysis during the filtration
was also observed.[122, 123] Furthermore, We demonstrated that human, dog and bovine
AGPs are able to stabilize the erythrocyte membrane by binding to the surface of the erythro‐
cyte.[124] At physiological concentrations, AGP protects erythrocytes from H2O2 due to its
antioxidant activity.[124, 125] According to these reports, an increase in the AGP content in
serum above the normal value found under pathological conditions facilitates the passage of
erythrocytes through capillaries, stabilizes erythrocyte membranes and protects against
oxidative stress, all of which are favorable properties for the microcirculation.

7. Conclusions

Since the initial discovery of AGP, numerous attempts have been made to study characteristics
of the molecule, but the actual roles of AGP are yet to be fully understood. Recent advances
in scientific technologies such as recombinant protein engineering provide novel and sophis‐
ticated tools to further elucidating the molecular and functional aspects of AGP. Among the
recent findings, high-resolution X-ray structural data for recombinant the unglycosylated F1*S
and A variants of human AGP would greatly promote the development of AGP research. In
the near future, it is expected that AGP, like albumin, fibrinogen and immunoglobulin, will
be developed for use in a variety of clinical situations.
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