57 research outputs found

    PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation

    Get PDF
    Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response

    Spin fluctuations in CuGeO3_3 probed by light scattering

    Full text link
    We have measured temperature dependence of low-frequency Raman spectra in CuGeO3_3, and have observed the quasi-elastic scattering in the (c,c)(c,c) polarization above the spin-Peierls transition temperature. We attribute it to the fluctuations of energy density in the spin system. The magnetic specific heat and an inverse of the magnetic correlation length can be derived from the quasi-elastic scattering. The inverse of the magnetic correlation length is proportional to (TTSP)1/2(T-T_{SP})^{1/2} at high temperatures. We compare the specific heat with a competing-JJ model. This model cannot explain quantitatively both the specific heat and the magnetic susceptibility with the same parameters. The origin of this discrepancy is discussed.Comment: 17 pages, REVTeX, 5 Postscript figures; in press in PR

    Effect of SARS-CoV-2 BNT162b2 mRNA vaccine on thyroid autoimmunity: A twelve-month follow-up study

    Get PDF
    ObjectivesGraves’ disease (GD) has been highlighted as a possible adverse effect of the respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine. However, it is unknown if the SARS-CoV-2 vaccine disrupts thyroid autoimmunity. We aimed to present long-term follow-up of thyroid autoimmunity after the SARS-CoV-2 BNT162b2 mRNA vaccine.MethodsSerum samples collected from seventy Japanese healthcare workers at baseline, 32 weeks after the second dose (pre-third dose), and 4 weeks after the third dose of the vaccine were analyzed. The time courses of anti-SARS-CoV-2 spike immunoglobulin G (IgG) antibody, thyroid-stimulating hormone receptor antibody (TRAb), and thyroid function were evaluated. Anti-thyroglobulin antibodies (TgAb) and anti-thyroid peroxidase antibodies (TPOAb) were additionally evaluated in thirty-three participants.ResultsThe median age was 50 (IQR, 38-54) years and 69% were female. The median anti-spike IgG antibody titer was 17627 (IQR, 10898-24175) U/mL 4 weeks after the third dose. The mean TRAb was significantly increased from 0.81 (SD, 0.05) IU/L at baseline to 0.97 (SD, 0.30) IU/L 4 weeks after the third dose without functional changes. An increase in TRAb was positively associated with female sex (β = 0.32, P = 0.008) and low basal FT4 (β = -0.29, P = 0.02) and FT3 (β = -0.33, P = 0.004). TgAb was increased by the third dose. Increase in TgAb was associated with history of the thyroid diseases (β = 0.55, P <0.001).ConclusionsSARS-CoV-2 BNT162b2 mRNA vaccine can disrupt thyroid autoimmunity. Clinicians should consider the possibility that the SARS-CoV-2 vaccine may disrupt thyroid autoimmunity

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The effect of a physiotherapy intervention on intestinal motility

    No full text

    A new species of Pinnixa (Crustacea: Decapoda: Brachyura: Pinnotheridae) associated with a tube worm, Chaetopterus cautus (Annelida: Polychaeta), from Tokyo Bay, Japan

    No full text
    Komai, Tomoyuki, Nishi, Eijiroh, Taru, Masanori (2014): A new species of Pinnixa (Crustacea: Decapoda: Brachyura: Pinnotheridae) associated with a tube worm, Chaetopterus cautus (Annelida: Polychaeta), from Tokyo Bay, Japan. Zootaxa 3793 (1): 119-132, DOI: 10.11646/zootaxa.3793.1.

    A new species of Pinnixa (Crustacea: Decapoda: Brachyura: Pinnotheridae) associated with a tube worm, Chaetopterus cautus (Annelida: Polychaeta), from Tokyo Bay, Japan

    No full text
    Komai, Tomoyuki, Nishi, Eijiroh, Taru, Masanori (2014): A new species of Pinnixa (Crustacea: Decapoda: Brachyura: Pinnotheridae) associated with a tube worm, Chaetopterus cautus (Annelida: Polychaeta), from Tokyo Bay, Japan. Zootaxa 3793 (1): 119-132, DOI: http://dx.doi.org/10.11646/zootaxa.3793.1.
    corecore