55 research outputs found

    Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    Full text link
    In the previous paper [M. Tsang, Phys. Rev. A 81, 063837 (2010), e-print arXiv:1003.0116], I proposed a quantum model of a cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable novel quantum operations on the two modes, including laser cooling of the microwave mode, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to a cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up-converted to "flying" optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.Comment: 12 pages, 10 figures, v2: updated and submitte

    The value of nonlinear control theory in investigating the underlying dynamics and resilience of a grocery supply chain

    Get PDF
    In an empirical context, a method to use nonlinear control theory in the dynamic analysis of supply chain resilience is developed and tested. The method utilises block diagram development, transfer function formulation, describing function representation of nonlinearities and simulation. Using both ‘shock’ or step response and ‘filter’ or frequency response lenses, a system dynamics model is created to analyse the resilience performance of a distribution centre replenishment system at a large grocery retailer. Potential risks for the retailer’s resilience performance include the possibility of a mismatch between supply and demand, as well as serving the store inefficiently and causing on-shelf stock-outs. Thus, resilience is determined by investigating the dynamic behaviour of stock and shipment responses. The method allows insights into the nonlinear system control structures that would not be evident using simulation alone, including a better understanding of the influence of control parameters on dynamic behaviour, the identification of inventory offsets potentially leading to ‘drift’, the impact of nonlinearities on supply chain performance and the minimisation of simulation experiments

    Graphical Models

    No full text

    Spacecraft Thruster Control via Sigma–Delta Modulation

    No full text

    A Compound Arm Approach to Digital Construction

    No full text
    We introduce a novel large-scale Digital Construction Platform (DCP) for on-site sensing, analysis, and fabrication. The DCP is an in-progress research project consisting of a compound robotic arm system comprised of a 5-axis Altec hydraulic mobile boom arm attached to a 6-axis KUKA robotic arm. Akin to the biological model of human shoulder and hand this compound system utilizes the large boom arm for gross positioning and the small robotic arm for fine positioning and oscillation correction respectively. The platform is based on a fully mobile truck vehicle with a working reach diameter of over 80 feet. It can handle a 1,500 lb lift capacity and a 20 lb manipulation capacity. We report on the progress of the DCP and speculate on potential applications including fabrication of non-standard architectural forms, integration of real-time on-site sensing data, improvements in construction efficiency, enhanced resolution, lower error rates, and increased safety. We report on a case study for platform demonstration through large-scale 3D printing of insulative formwork for castable structures. We discuss benefits and potential future applications.National Science Foundation (U.S.) (Early Concept Grants for Exploratory Research (EAGER) Grant Award 1152550

    Longitudinal Control Strategy for Hypersonic Accelerating Vehicles

    No full text
    • …
    corecore