14 research outputs found
Transcription of the apicoplast genome
Many members of the Apicomplexa contain a remnant chloroplast, known as an apicoplast. The apicoplast encodes numerous genes, and loss of the organelle is lethal. Here, we present a summary of what is known about apicoplast transcription. Unlike plant chloroplasts, there is a single RNA polymerase, and initial transcription is polycistronic. RNA is then cleaved into tRNA, mRNA and rRNA molecules. Significant levels of antisense transcription have been reported, together with a single case of RNA editing. Polycistronic transcription is also observed in the related algae Chromera and Vitrella, which retain a photosynthetic chloroplast. Surprisingly, a polyU tail is added to Chromera and Vitrella transcripts which encode proteins involved in photosynthesis. No such tail is added to Plasmodium transcripts. Transcription in the Apicomplexa is remarkably similar to that seen in the chloroplast of the related peridinin dinoflagellate algae, reflecting the common evolutionary origins of the organelle
Transcript Level Responses of Plasmodium falciparum to Antimycin A
The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the transcript profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. The differentially expressed genes were enriched for transcripts encoding proteins involved in invasion, stress response, nucleotide biosynthesis and respiration. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis, implying the existence of a signalling pathway from the mitochondrion to the nucleus
A Gene in the Process of Endosymbiotic Transfer
BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont
Carbon source regulation of gene expression in Methylosinus trichosporium OB3b
Gene expression in methanotrophs has been shown to be affected by the availability of a variety of metals, most notably copper regulating expression of alternative forms of methane monooxygenase. Here, we show that growth substrate also affects expression of genes encoding for enzymes responsible for the oxidation of methane to formaldehyde and the assimilation of carbon. Specifically, in Methylosinus trichosporium OB3b, expression of genes involved in the conversion of methane to methanol (pmoA and mmoX) and methanol to formaldehyde (mxaF, xoxF1, and xoxF2) as well as in carbon assimilation (fae1, fae2, metF, and sga) decreased when this strain was grown on methanol vs. methane, indicating that methanotrophs manipulate gene expression in response to growth substrate as well as the availability of copper. Interestingly, growth of M. trichosporium OB3b on methane vs. methanol was similar despite such large changes in gene expression. Finally, methanol-grown cultures of M. trichosporium OB3b also exhibited the “copper-switch.” That is, expression of pmoA increased and mmoX decreased in the presence of copper, indicating that copper still controlled the expression of alternative forms of methane monooxygenase in M. trichosporium OB3b even though methane was not provided. Such findings indicate that methanotrophs can sense and respond to multiple environmental parameters simultaneously