59 research outputs found

    Use of hamster as a model to study diet-induced atherosclerosis

    Get PDF
    Golden-Syrian hamsters have been used as an animal model to assess diet-induced atherosclerosis since the early 1980s. Advantages appeared to include a low rate of endogenous cholesterol synthesis, receptor-mediated uptake of LDL cholesterol, cholesteryl ester transfer protein activity, hepatic apoB-100 and intestinal apoB-48 secretion, and uptake of the majority of LDL cholesterol via the LDL receptor pathway. Early work suggested hamsters fed high cholesterol and saturated fat diets responded similarly to humans in terms of lipoprotein metabolism and aortic lesion morphology. Recent work has not consistently replicated these findings. Reviewed was the literature related to controlled hamster feeding studies that assessed the effect of strain, background diet (non-purified, semi-purified) and dietary perturbation (cholesterol and/or fat) on plasma lipoprotein profiles and atherosclerotic lesion formation. F1B hamsters fed a non-purified cholesterol/fat-supplemented diet had more atherogenic lipoprotein profiles (nHDL-C > HDL-C) than other hamster strains or hamsters fed cholesterol/fat-supplemented semi-purified diets. However, fat type; saturated (SFA), monounsaturated or n-6 polyunsaturated (PUFA) had less of an effect on plasma lipoprotein concentrations. Cholesterol- and fish oil-supplemented semi-purified diets yielded highly variable results when compared to SFA or n-6 PUFA, which were antithetical to responses observed in humans. Dietary cholesterol and fat resulted in inconsistent effects on aortic lipid accumulation. No hamster strain was reported to consistently develop lesions regardless of background diet, dietary cholesterol or dietary fat type amount. In conclusion, at this time the Golden-Syrian hamster does not appear to be a useful model to determine the mechanism(s) of diet-induced development of atherosclerotic lesions

    Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]).</p> <p>Results</p> <p>Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05).</p> <p>Conclusion</p> <p>These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.</p

    Feasibility, Safety and Acceptability of Soy-Based Diet for Pregnant Women: Preliminary Results from a Pilot Randomized Controlled Trial

    Get PDF
    Background: Previous evidence suggests that soy containing foods may have beneficial effects on lipid and glycemic metabolism. Pregnancy is associated with a progressive deterioration in glucose and lipid metabolism, partially attributable to elevated estrogen concentrations. Little is known about the effects of soy intake on cardiometabolic risk factors in pregnant women. Methods: A pilot RCT was conducted in 30 pregnant women who were randomized to receive counseling to consume a high-soy or low-soy foods containing diet. Assessments (physical measurements, food frequency questionnaires, fasting blood samples) were conducted at 14 and 28 weeks of pregnancy, and 6 weeksā€™ postpartum. Monthly follow-up calls were conducted to assess safety and encourage adherence. Results: Both the high-soy and low-soy groups demonstrated high adherence (80-90%), defined as consuming soy foods ā‰„ 15 days in the past four weeks for high-soy group and ā‰¤ 5 days for low-soy group. Five adverse events possibly associated with soy intake were reported (nausea, vomiting, diarrhea, itchy mouth); all were transient and resolved without sequelae. The high-soy group lost body fat between baseline and postpartum while the low-soy group gained body fat, as reflected by change in triceps skinfold thickness (-4.8 mm vs +3.6 mm, p=0.04). There was a trend towards an improvement in BMI in the high-soy group, both at 28 weeks (+1.4 vs. +3.6 kg/m2, p=0.15) and postpartum (-1.2 vs. +0.6 kg/m2, p=0.14). There were no differences between groups in fasting glucose, HDL-C, LDL-C, TG, or VLDL levels. Conclusion: Initial results from this pilot RCT support the acceptability and safety of consuming soy-based whole foods during pregnancy. A larger-scale RCT is needed to further elucidate the effects of soy diet on cardiometabolic risk among pregnant women

    Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans

    Get PDF
    BACKGROUND: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971

    Reply to TMS Wolever et al.

    No full text

    Effect of Diets Differing in Glycemic Index and Glycemic Load on Cardiovascular Risk Factors: Review of Randomized Controlled-Feeding Trials

    Get PDF
    Despite a considerable amount of data available on the relationship between dietary glycemic index (GI) or load (GL) and cardiovascular disease (CVD) risk factors, in aggregate, the area remains unsettled. The aim of the present review was to summarize the effect of diets differing in GI/GL on CVD risk factors, by examining randomized controlled-feeding trials that provided all food and beverages to adult participants. The studies included a low and high GI/GL diet phase for a minimum of four weeks duration, and reported at least one outcome related to CVD risk; glucose homeostasis, lipid profile or inflammatory status. Ten publications representing five trials were identified. The low GI/GL compared to the high GI/GL diet unexpectedly resulted in significantly higher fasting glucose concentrations in two of the trials, and a lower area under the curve for glucose and insulin in one of the two studies during an oral glucose tolerance test. Response of plasma total, low density lipoprotein and high density lipoprotein cholesterol concentrations was conflicting in two of the studies for which data were available. There was either weak or no effect on inflammatory markers. The results of the five randomized controlled trials satisfying the inclusion criteria suggest inconsistent effects of the GI/GL value of the diet on CVD risk factors

    Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adultsā€”Randomized Controlled Crossover Trial

    No full text
    Food intake data collected using subjective tools are prone to inaccuracies and biases. An objective assessment of food intake, such as metabolomic profiling, may offer a more accurate method if unique metabolites can be identified. To explore this option, we used samples generated from a randomized and controlled cross-over trial during which participants (N = 10; 65 Ā± 8 year, BMI, 29.8 Ā± 3.2 kg/m2) consumed each of the three diets enriched in different types of carbohydrate. Plasma metabolite concentrations were measured at the end of each diet phase using gas chromatography/time-of-flight mass spectrometry and ultra-high pressure liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Participants were provided, in random order, with diets enriched in three carbohydrate types (simple carbohydrate (SC), refined carbohydrate (RC) and unrefined carbohydrate (URC)) for 4.5 weeks per phase and separated by two-week washout periods. Data were analyzed using partial least square-discrimination analysis, receiver operating characteristics (ROC curve) and hierarchical analysis. Among the known metabolites, 3-methylhistidine, phenylethylamine, cysteine, betaine and pipecolic acid were identified as biomarkers in the URC diet compared to the RC diet, and the later three metabolites were differentiated and compared to SC diet. Hierarchical analysis indicated that the plasma metabolites at the end of each diet phase were more strongly clustered by the participant than the carbohydrate type. Hence, although differences in plasma metabolite concentrations were observed after participants consumed diets differing in carbohydrate type, individual variation was a stronger predictor of plasma metabolite concentrations than dietary carbohydrate type. These findings limited the potential of metabolic profiling to address this variable

    Carotenoid-Rich Brain Nutrient Pattern Is Positively Correlated With Higher Cognition and Lower Depression in the Oldest Old With No Dementia

    Get PDF
    Background: Healthy dietary patterns are related to better cognitive health in aging populations. While levels of individual nutrients in neural tissues are individually associated with cognitive function, the investigation of nutrient patterns in human brain tissue has not been conducted. Methods: Brain tissues were acquired from frontal and temporal cortices of 47 centenarians from the Georgia Centenarian Study. Fat-soluble nutrients (carotenoids, vitamins A, E, K, and fatty acids [FA]) were measured and averaged from the two brain regions. Nutrient patterns were constructed using principal component analysis. Cognitive composite scores were constructed from cognitive assessment from the time point closest to death. Dementia status was rated by Global Deterioration Scale (GDS). Pearsonā€™s correlation coefficients between NP scores and cognitive composite scores were calculated controlling for sex, education, hypertension, diabetes, and APOE +4 allele. Result: Among non-demented subjects (GDS = 1ā€“3, n = 23), a nutrient pattern higher in carotenoids was consistently associated with better performance on global cognition (r = 0.38, p = 0.070), memory (r = 0.38, p = 0.073), language (r = 0.42, p = 0.046), and lower depression (r = āˆ’0.40, p = 0.090). The findings were confirmed with univariate analysis. Conclusion: Both multivariate and univariate analyses demonstrate that brain nutrient pattern explained mainly by carotenoid concentrations is correlated with cognitive function among subjects who had no dementia. Investigation of their synergistic roles on the prevention of age-related cognitive impairment remains to be performed
    • ā€¦
    corecore