51 research outputs found

    CURTAIN – A unique web-based tool for exploration and sharing of MS-based proteomics data

    Get PDF
    To facilitate analysis and sharing of mass spectrometry (MS)-based proteomics data, we created online tools called CURTAIN (https://curtain.proteo.info) and CURTAIN-PTM (https://curtainptm.proteo.info) with an accompanying series of video tutorials (https://www.youtube.com/@CURTAIN-me6hl). These are designed to enable non-MS experts to interactively peruse volcano plots and deconvolute primary experimental data so that replicates can be visualized in bar charts or violin plots and exported in publication-ready format. They also allow assessment of overall experimental quality by correlation matrix and profile plot analysis. After making a selection of protein "hits", the user can analyze known domain structure, AlphaFold predicted structure, reported interactors, relative expression as well as disease links. CURTAIN-PTM permits analysis of all identified PTM sites on protein(s) of interest with selected databases. CURTAIN-PTM also links with the Kinase Library to predict upstream kinases that may phosphorylate sites of interest. We provide examples of the utility of CURTAIN and CURTAIN-PTM in analyzing how targeted degradation of the PPM1H Rab phosphatase that counteracts the Parkinson's LRRK2 kinase impacts cellular protein levels and phosphorylation sites. We also reanalyzed a ubiquitylation dataset, characterizing the PINK1-Parkin pathway activation in primary neurons, revealing data of interest not highlighted previously. CURTAIN and CURTAIN-PTM are free to use and open source, enabling researchers to share and maximize the impact of their proteomics data. We advocate that MS data published in volcano plot format be reported containing a shareable CURTAIN weblink, thereby allowing readers to better analyze and exploit the data.</p

    Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis

    Get PDF
    We previously reported that Parkinson's disease (PD) kinase LRRK2 phosphorylates a subset of Rab GTPases on a conserved residue in their switch-II domains (Steger et al., 2016) (PMID: 26824392). Here, we systematically analyzed the Rab protein family and found 14 of them (Rab3A/B/C/D, Rab5A/B/C, Rab8A/B, Rab10, Rab12, Rab29, Rab35 and Rab43) to be specifically phosphorylated by LRRK2, with evidence for endogenous phosphorylation for ten of them (Rab3A/B/C/D, Rab8A/B, Rab10, Rab12, Rab35 and Rab43). Affinity enrichment mass spectrometry revealed that the primary ciliogenesis regulator, RILPL1 specifically interacts with the LRRK2-phosphorylated forms of Rab8A and Rab10, whereas RILPL2 binds to phosphorylated Rab8A, Rab10, and Rab12. Induction of primary cilia formation by serum starvation led to a two-fold reduction in ciliogenesis in fibroblasts derived from pathogenic LRRK2-R1441G knock-in mice. These results implicate LRRK2 in primary ciliogenesis and suggest that Rab-mediated protein transport and/or signaling defects at cilia may contribute to LRRK2-dependent pathologies

    Parkinson's VPS35[D620N] mutation induces LRRK2-mediated lysosomal association of RILPL1 and TMEM55B

    Get PDF
    We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.</p

    Parkinson's VPS35[D620N] mutation induces LRRK2-mediated lysosomal association of RILPL1 and TMEM55B

    Get PDF
    We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.</p
    • …
    corecore