3 research outputs found

    Bulk nanobubbles from acoustically cavitated aqueous organic solvent mixtures

    Get PDF
    We investigate the existence and stability of bulk nanobubbles in various aqueous organic solvent mixtures. Bulk nanobubble suspensions generated via acoustic cavitation are characterized in terms of their bubble size distribution, bubble number density, and zeta potential. We show that bulk nanobubbles exist in pure water but do not exist in pure organic solvents, and they disappear at some organic solvent–water ratio. We monitor the nanobubble suspensions over a period of a few months and propose interpretations for the differences behind their long-term stability in pure water versus their long-term stability in aqueous organic solvent solutions. Bulk nanobubbles in pure water are stabilized by their substantial surface charge arising from the adsorption of hydroxyl ions produced by self-ionization of water. Pure organic solvents do not autoionize, and therefore, nanobubbles cannot exist in concentrated aqueous organic solvent solutions. Because of preferential adsorption of organic solvent molecules at the nanobubble interfaces, the surface charge of the nanobubbles decreases with the solvent content, but the strong hydrogen bonding near their interfaces ensures their stability. The mean bubble size increases monotonically with the solvent content, whereas the surface tension of the mixture is sharply reduced. This is in agreement with literature results on macro- and microbubbles in aqueous organic solutions, but it stands in stark contrast to the behavior of macro- and microbubbles in aqueous surfactant solutions

    On the existence and stability of bulk nanobubbles

    Get PDF
    Bulk nanobubbles are a novel type of nanoscale bubble system. Because of their extraordinary behavior, however, their existence is not widely accepted. In this paper, we shed light on the hypothesis that bulk nanobubbles do exist, they are filled with gas, and they survive for long periods of time, challenging present theories. An acoustic cavitation technique has been used to produce bulk nanobubbles in pure water in relatively large numbers approaching 10<sup>9</sup> bubble·mL<sup>–1</sup> with a typical diameter of 100–120 nm. We provide multiple evidence that the nanoentities observed in suspension are nanobubbles given that they disappear after freezing and thawing of the suspensions, their nucleation rate depends strongly on the amount of air dissolved in water, and they gradually disappear over time. The bulk nanobubble suspensions were stable over periods of many months during which time the mean diameter remained unchanged, suggesting the absence of significant bubble coalescence, bubble breakage, or Ostwald ripening effects. Measurements suggest that these nanobubbles are negatively charged and their zeta potential does not vary over time. The presence of such a constant charge on the nanobubble surfaces is probably responsible for their stability. The effects of pH, salt, and surfactant addition on their colloidal stability are similar to those reported in the literature for solid nanoparticle suspensions, that is, nanobubbles are more stable in an alkaline medium than in an acidic one; the addition of salt to a nanobubble suspension drives the negative zeta potential toward zero, thus reducing the repulsive electrostatic forces between nanobubbles; and the addition of an anionic surfactant increases the magnitude of the negative zeta potential, thus improving nanobubble electrostatic stabilization
    corecore