14 research outputs found

    Child with Deletion 9p Syndrome Presenting with Craniofacial Dysmorphism, Developmental Delay, and Multiple Congenital Malformations

    Get PDF
    A 4-month-old Sri Lankan male child case with a de novo terminal deletion in the p22 → pter region of chromosome 9 is described. The child presented with craniofacial dysmorphism, developmental delay, and congenital malformations in agreement with the consensus phenotype. A distinctive feature observed in this child was complete collapse of the left lung due to malformation of lung tissue. Cytogenetic studies confirmed terminal deletion of the short arm of chromosome 9 distal to band p22 [46,XY,del(9)(p22 → pter)]. This is the first reported case of a de novo deletion 9p syndrome associated with pulmonary hypoplasia. This finding contributes to the widening of the spectrum of phenotypic features associated with deletion 9p syndrome

    Child with Deletion 9p Syndrome Presenting with Craniofacial Dysmorphism, Developmental Delay, and Multiple Congenital Malformations

    Get PDF
    A 4-month-old Sri Lankan male child case with a de novo terminal deletion in the p22→pter region of chromosome 9 is described. The child presented with craniofacial dysmorphism, developmental delay, and congenital malformations in agreement with the consensus phenotype. A distinctive feature observed in this child was complete collapse of the left lung due to malformation of lung tissue. Cytogenetic studies confirmed terminal deletion of the short arm of chromosome 9 distal to band p22 [46,XY,del(9)(p22→pter)]. This is the first reported case of a de novo deletion 9p syndrome associated with pulmonary hypoplasia. This finding contributes to the widening of the spectrum of phenotypic features associated with deletion 9p syndrome

    The Frequency and Spectrum of Chromosomal Translocations in a Cohort of Sri Lankans

    No full text
    Translocations are the most common type of structural chromosomal abnormalities. Unbalanced translocations are usually found in children who present with congenital abnormalities, developmental delay, or intellectual disability. Balanced translocations are usually found in adults who frequently present with reproductive failure; either subfertility, or recurrent pregnancy loss. Herein, we report the spectrum and frequency of translocations in a Sri Lankan cohort. A database of patients undergoing cytogenetic testing was maintained prospectively from January 2007 to December 2016 and analyzed, retrospectively. A total of 15,864 individuals were tested. Among them, 277 (1.7%) had translocations. There were 142 (51.3%) unbalanced translocations and 135 (48.7%) balanced translocations. Majority (160; 57.8%) were Robertsonian translocations. There were 145 (52.3%) children and adolescents aged less than 18 years with translocations, and 142 (97.9%) were unbalanced translocations. Majority [138 (95.2%)] were referred due to congenital abnormalities, developmental delay, or intellectual disability, and 91 were children with translocation Down syndrome. All adults aged 18 years or above (132) had balanced translocations. Subfertility and recurrent pregnancy loss [84 (63.6%)] and offspring(s) with congenital abnormalities [48 (36.4%)] were the most common indications in this group. Majority (68.2%) in this group were females with reciprocal translocations (55.3%). Chromosomes 21, 14, and 13 were the most commonly involved with rob(14q21q) [72 (26%)], rob(21q21q) [30 (13.7%)], and rob(13q14q) [34 (12.3%)] accounting for 52% of the translocations. Chromosomes 1, 8, 11, and 18 were most commonly involved in reciprocal translocations. The observed high frequency of chromosomal translocations in our cohort highlights the importance of undertaking cytogenetic evaluation and providing appropriate genetic counseling for individuals with the phenotypes associated with these translocations

    Candidate gene study of genetic thrombophilic polymorphisms in pre-eclampsia and recurrent pregnancy loss in Sinhalese women

    No full text
    Aim: Genetic thrombophilias are known to contribute to adverse pregnancy outcomes. Studies in Western populations show that 5, 10-methylenetetrahydrofolate reductase (MTHFR) 677C>T and Factor V (F5) 1691G>A (Leiden) polymorphisms are commonly associated with pre-eclampsia and recurrent spontaneous pregnancy loss. The objective of this study was to investigate the association of MTHFR 677C>T (rs1801133); 1298A>C (rs1801131) and F5 1691G>A (rs6025); 4070A>G (rs1800595) polymorphisms with pre-eclampsia and recurrent pregnancy loss among Sinhalese women in Sri Lanka. Material and Methods: Genotype and allele frequencies at each polymorphic site in the MTHFR and F5 genes and the haplotypes defined by them were determined in 175 Sinhalese women with pre-eclampsia, 171 normotensive controls, 200 Sinhalese women with two or more recurrent pregnancy losses and 200 controls with two or more living children and no pregnancy losses. Genotyping was done by polymerase chain reaction/restriction fragment length polymorphism. Odds ratios and X²-testing were performed to compare genotype/haplotype frequencies at each polymorphic site for both cases and controls. Results: The genotype frequencies at each polymorphic site in the MTHFR 677C>T; 1298A>C; F5 1691G>A and 4070A>G genes and the haplotypes defined by them were not significantly associated with either preeclampsia or recurrent pregnancy loss. There was no significant association of genetic thrombophilia with either early or late pregnancy losses. Conclusions: The MTHFR and F5 polymorphisms and the haplotypes defined by them were not significantly associated with either pre-eclampsia or recurrent pregnancy loss in this group of Sinhalese women.9 page(s

    Frequency of pharmacogenomic variants affecting efficacy and safety of anti-cancer drugs in a south Asian population from Sri Lanka

    No full text
    Abstract Background Therapy with anti-cancer drugs remain the cornerstone of treating cancer. The effectiveness and safety of anti-cancer drugs vary significantly among individuals due to genetic factors influencing the drug response and metabolism. Data on the pharmacogenomic variations in Sri Lankans related to anti-cancer therapy is sparse. As current treatment guidelines in Sri Lanka often do not consider local pharmacogenomic variants, this study aimed to explore the diversity of pharmacogenomic variants in the Sri Lankan population to pave the way for personalized treatment approaches and improve patient outcomes. Methods Pharmacogenomic data regarding variant-drug pairs of genes CYP2D6, DPYD, NUDT15, EPAS1, and XRCC1 with clinical annotations labelled as evidence levels 1A-2B were obtained from the Pharmacogenomics Knowledgebase database. Their frequencies in Sri Lankans were obtained from an anonymized database that was derived from 541 Sri Lankans who underwent exome sequencing at the Human Genetics Unit, Faculty of Medicine, University of Colombo. Variations in DPYD, NUDT15, and EPAS1 genes are related to increased toxicity to fluoropyrimidines, mercaptopurines, and sorafenib respectively. Variations in CYP2D6 and XRCC1 genes are related to changes in efficacy of tamoxifen and platinum compounds, respectively. Minor allele frequencies of these variants were calculated and compared with other populations. Results MAFs of rs1065852 c.100 C > T (CYP2D6), rs3918290 c.1905 + 1G > A (DPYD), rs56038477 c.1236G > A (DPYD), rs7557402 c.1035–7 C > G (EPAS1), rs116855232 c.415 C > T (NUDT15*3), and rs25487 c.1196 A > G (XRCC1) were: 12.9% [95%CI:10.9–14.9], 1.5% [95%CI:0.8–2.2], 1.2% [95%CI:0.5–1.8], 37.7% [95%CI:34.8–40.6], 8.3% [95%CI:6.7–10.0], and 64.0% [95%CI:61.1–66.8], respectively. Frequencies of rs1065852 c.100 C > T (CYP2D6), rs7557402 c.1035–7 C > G (EPAS1), and rs25487 (XRCC1) were significantly lower in Sri Lankans, while frequencies of rs116855232 c.415 C > T (NUDT15*3) and rs56038477 c.1236G > A (DPYD) were significantly higher in Sri Lankans when compared to some Western and Asian populations. Conclusion Sri Lankans are likely to show lower toxicity risk with sorafenib (rs7557402 c.84,131 C > G) and, higher toxicity risk with fluoropyrimidines (rs56038477 c.1236G > A) and mercaptopurine (rs116855232 c.415 C > T), and reduced effectiveness with tamoxifen (rs1065852 c.100 C > T) and platinum compounds (rs25487). These findings highlight the potential contribution of these genetic variations to the individual variability in anti-cancer dosage requirements among Sri Lankans

    Cornelia de Lange syndrome in diverse populations

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes—NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.Supplementary Table 1 Participants with photographs in Figures 2-5 from 10 countries. Supplementary Table 2. Geometric and texture feature comparison of Global (combined African descent, Asian, Latin American, Caucasian) CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 3. Geometric and texture feature comparison of African descent CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 4. Geometric and texture feature comparison of Asian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 5. Geometric and texture feature comparison of Latin American CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 6. Geometric and texture feature comparison of Caucasian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Figure 1. Global: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 2. African: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 3. Asian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 4. Latin American: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 5. Caucasian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selectedPK and MM are supported by the Division of Intramural Research at the National Human Genome Research, NIH. Partial funding of this project was from a philanthropic gift from the Government of Abu Dhabi to the Children's National Health System. VS is supported by the Chulalongkorn Academic Advancement Into Its 2nd Century Project and the Thailand Research Fund. We would also like to acknowledge other clinicians who supported this work—MZ, JP, and GC. We would like to acknowledge that IDK, LD, MK, and SR are supported by the CdLS Center Endowed Funds at The Children's Hospital of Philadelphia and PO1 HD052860 from the NICHD. ES is supported by a fellowship from PKS Italia and PKSKids USA. LD was also supported by a postdoctoral training grant (T32 GM008638) from the NIGMS.http://wileyonlinelibrary.com/journal/ajmga2020-02-01hj2019Genetic
    corecore