13 research outputs found

    Investigating the role of immune responses in preventing relapse in women with high-grade serous ovarian cancer (HGSOC)

    No full text
    Development of novel diagnostic and prognostic clinical tests or models is critical to help stratify patients with ovarian cancer for an improved disease outcome, particular for a better survival and quality of life. This data presented herein give evidence that the diagnostic and prognostic prediction model for ovarian cancer patients can be improved by using inflammatory and immunosuppressive parameters, allowing for personalised therapy. We also identified the relationship between these novel biomarkers, which can be used in combination as potential anti-tumour targets in ovarian cancer, adding to the understanding of how these biomarkers co-exist within the tumour microenvironment

    Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells

    No full text
    BackgroundEpithelial ovarian cancer (EOC) remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs) in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2), as well as pro-inflammatory factors such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs.MethodsAscites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control). In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2+ Tregs and TNFR2− Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC.ResultsHigh levels of immunosuppressive (sTNFR2, IL-10, and TGF-β) and pro-inflammatory cytokines (IL-6 and TNF) were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4+CD25hiFoxP3+ Tregs, resulting in an increased TNFR2+ Treg/effector T cell ratio. Furthermore, TNFR2+ Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2+ Treg frequency was inversely correlated with interferon-gamma (IFN-γ) production by effector T cells, and was uniquely able to suppress TNFR2+ T effectors. Blockade of IL-6, but not TNF, within ascites decreased TNFR2+ Treg frequency. Results indicating malignant ascites promotes TNFR2 expression, and increased suppressive Treg activity using PBMC were confirmed using purified Treg subsets.ConclusionIL-6 present in malignant ovarian cancer ascites promotes increased TNFR2 expression and frequency of highly suppressive Tregs

    New Predictive Biomarkers for Ovarian Cancer

    No full text
    Ovarian cancer is the eighth-most common cause of death among women worldwide. In the absence of distinctive symptoms in the early stages, the majority of women are diagnosed in advanced stages of the disease. Surgical debulking and systemic adjuvant chemotherapy remain the mainstays of treatment, with the development of chemoresistance in up to 75% of patients with subsequent poor treatment response and reduced survival. Therefore, there is a critical need to revisit existing, and identify potential biomarkers that could lead to the development of novel and more effective predictors for ovarian cancer diagnosis and prognosis. The capacity of these biomarkers to predict the existence, stages, and associated therapeutic efficacy of ovarian cancer would enable improvements in the early diagnosis and survival of ovarian cancer patients. This review not only highlights current evidence-based ovarian-cancer-specific prognostic and diagnostic biomarkers but also provides an update on various technologies and methods currently used to identify novel biomarkers of ovarian cancer

    Recent Advances in Surface Plasmon Resonance (SPR) Technology for Detecting Ovarian Cancer Biomarkers

    No full text
    Epithelial Ovarian Cancer (EOC) is a leading cause of cancer-related deaths among women, mainly due to a lack of early detection and screening methods. Advanced immunoassay techniques, such as Luminex and proximity extension assay (PEA) technology, show promise in improving EOC detection by utilizing highly sensitive and specific multiplex panels to detect multiple combinations of biomarkers. However, these advanced immunoassay techniques have certain limitations, especially in validating the performance characteristics such as specificity, sensitivity, limit of detection (LOD), and dynamic range for each EOC biomarker within the panel. Implementing multiplexing in point-of-care (POC) biosensors can enhance EOC biomarker detection, with Surface Plasmon Resonance (SPR) being a versatile option among optical biosensors. There is no study on multiplex SPR biosensors specifically tailored for diagnosing EOC. Recent studies have shown promising results in the single detection of EOC biomarkers using SPR, with LOD for cancer antigen 125 (CA125) at 0.01 U/mL−1 and human epididymis protein 4 (HE4) at 1pM. This study proposes a potential roadmap for scientists and engineers in academia and industry to develop a cost effective yet highly efficient SPR biosensor platform for detecting EOC

    Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers

    No full text
    Ovarian cancer is a lethal reproductive tumour affecting women worldwide. The advancement in presentation and occurrence of chemoresistance are the key factors for poor survival among ovarian cancer women. Surgical debulking was the mainstay of systemic treatment for ovarian cancer, which was followed by a successful start to platinum-based chemotherapy. However, most women develop platinum resistance and relapse within six months of receiving first-line treatment. Thus, there is a great need to identify biomarkers to predict platinum resistance before enrolment into chemotherapy, which would facilitate individualized targeted therapy for these subgroups of patients to ensure better survival and an improved quality of life and overall outcome. Harnessing the immune response through immunotherapy approaches has changed the treatment way for patients with cancer. The immune outline has emerged as a beneficial tool for recognizing predictive and prognostic biomarkers clinically. Studying the tumour microenvironment (TME) of ovarian cancer tissue may provide awareness of actionable targets for enhancing chemotherapy outcomes and quality of life. This review analyses the relevance of immunohistochemistry biomarkers as prognostic biomarkers in predicting chemotherapy resistance and improving the quality of life in ovarian cancer

    Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers

    No full text
    Ovarian cancer is a lethal reproductive tumour affecting women worldwide. The advancement in presentation and occurrence of chemoresistance are the key factors for poor survival among ovarian cancer women. Surgical debulking was the mainstay of systemic treatment for ovarian cancer, which was followed by a successful start to platinum-based chemotherapy. However, most women develop platinum resistance and relapse within six months of receiving first-line treatment. Thus, there is a great need to identify biomarkers to predict platinum resistance before enrolment into chemotherapy, which would facilitate individualized targeted therapy for these subgroups of patients to ensure better survival and an improved quality of life and overall outcome. Harnessing the immune response through immunotherapy approaches has changed the treatment way for patients with cancer. The immune outline has emerged as a beneficial tool for recognizing predictive and prognostic biomarkers clinically. Studying the tumour microenvironment (TME) of ovarian cancer tissue may provide awareness of actionable targets for enhancing chemotherapy outcomes and quality of life. This review analyses the relevance of immunohistochemistry biomarkers as prognostic biomarkers in predicting chemotherapy resistance and improving the quality of life in ovarian cancer

    Combining TNFR2-Expressing Tregs and IL-6 as Superior Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Masses

    No full text
    We hypothesised that the inclusion of immunosuppressive and inflammatory biomarkers in HGSOC patients would improve the sensitivity and specificity of the preoperative marker prediction of malignancy in patients with ovarian masses. We tested a panel of 29 soluble immune factors by multiplex bead immunoassay and 16 phenotypic T cell markers by flow cytometry in pre-treatment blood samples from 66 patients undergoing surgery for suspected ovarian cancer or ovarian cancer risk reduction. The potential diagnostic utility of all parameters was explored using Volcano plots, principal component analysis (PCA) and receiver operator characteristic (ROC) analysis. We also assessed the effect of culturing PBMCs from 20 healthy donors in the presence of malignant ascites fluid. The combination of TNFR2+ Tregs and IL-6 in the pre-treatment blood of patients with advanced HGSOC effectively discriminated patients with benign or malignant ovarian masses. In vitro culturing of the PBMCs of healthy donors in malignant ascites promoted an increase in TNFR2-expressing Tregs, which were decreased following blockade with IL-6 or STAT3 activity. Pre-treatment serum IL-6 and peripheral blood TNFR2+ Tregs may be potential clinical biomarkers that can discriminate patients with malignant compared to benign ovarian cancer masses, and the relationship between IL-6 and TNFR2+ Treg is likely to be mediated via the STAT3 signalling pathway
    corecore