15 research outputs found

    Syncope

    No full text
    Syncope is defined as an acute, brief and transient loss of consciousness and postural tone with spontaneous and complete recovery. Neurovascular ultrasound has contributed to elucidate the underlying mechanism of different types of syncope. In routine diagnostic work-up of patients with syncope, however, neurovascular ultrasound is not among the first line tools. In particular, an ultrasound search for occlusive cerebro-vascular disease is of limited value because cerebral artery obstruction is a very rare and questionable cause of syncope. Transcranial Doppler sonography monitoring of the cerebral arteries is useful in the diagnostic work-up of patients with suspicion of postural related, cerebrovascular, cough and psychogenic syncope, and in some cases for differentiating focal epileptic seizures from transient ischemic attacks and migraine with aura

    Muscle metabolites: functional MR spectroscopy during exercise imposed by tetanic electrical nerve stimulation

    No full text
    Permission from the ethics committee and informed consent were obtained. The purpose of this study was to prospectively evaluate a method developed for the noninvasive assessment of muscle metabolites during exercise. Hydrogen 1 magnetic resonance (MR) spectroscopy peaks were measured during tetanic isometric muscle contraction imposed by supramaximal repetitive nerve stimulation. The kinetics of creatine-phosphocreatine and acetylcarnitine signal changes (P < .001) could be assessed continuously before, during, and after exercise. The control peak (trimethylammonium compounds), which served as an internal reference, did not change. This technique-that is, functional MR spectroscopy-opens the possibility for noninvasive diagnostic muscle metabolite testing in a clinical setting

    Visual and spectral analysis of sleep EEG in acute hemispheric stroke

    No full text
    BACKGROUND: Reports on the effects of focal hemispheric damage on sleep EEG are rare and contradictory. PATIENTS AND METHODS: Twenty patients (mean age +/- SD 53 +/- 14 years) with a first acute hemispheric stroke and no sleep apnea were studied. Stroke severity [National Institute of Health Stroke Scale (NIHSS)], volume (diffusion-weighted brain MRI), and short-term outcome (Rankin score) were assessed. Within the first 8 days after stroke onset, 1-3 sleep EEG recordings per patient were performed. Sleep scoring and spectral analysis were based on the central derivation of the healthy hemisphere. Data were compared with those of 10 age-matched and gender-matched hospitalized controls with no brain damage and no sleep apnea. RESULTS: Stroke patients had higher amounts of wakefulness after sleep onset (112 +/- 53 min vs. 60 +/- 38 min, p < 0.05) and a lower sleep efficiency (76 +/- 10% vs. 86 +/- 8%, p < 0.05) than controls. Time spent in slow-wave sleep (SWS) and rapid eye movement (REM) sleep and total sleep time were lower in stroke patients, but differences were not significant. A positive correlation was found between the amount of SWS and stroke volume (r = 0.79). The slow-wave activity (SWA) ratio NREM sleep/wakefulness was lower in patients than in controls (p < 0.05), and correlated with NIHSS (r = -0.47). CONCLUSION: Acute hemispheric stroke is accompanied by alterations of sleep EEG over the healthy hemisphere that correlate with stroke volume and outcome. The increased SWA during wakefulness and SWS over the healthy hemisphere contralaterally to large strokes may reflect neuronal hypometabolism induced transhemispherically (diaschisis)

    Sleep and wakefulness disturbances in Swiss pharmacy customers

    No full text
    BACKGROUND AND OBJECTIVE: Sleep disturbances are prevalent but often overlooked or underestimated. We suspected that sleep disorders might be particularly common among pharmacy customers, and that they could benefit from counselling. Therefore, we described the prevalence and severity of symptoms associated with sleep and wakefulness disorders among Swiss pharmacy customers, and estimated the need for counselling and treatment. METHODS: In 804 Swiss pharmacies (49% of all community pharmacies) clients were invited to complete the Stanford Sleep Disorders Questionnaire (SDQ), and the Epworth Sleepiness Scale (EPW). The SDQ was designed to classify symptoms of sleep and wakefulness into the four most prevalent disorders: sleep apnoea syndrome (SAS), insomnia in psychiatric disorders (PSY), periodic leg movement disorders/restless legs (RLS) and narcolepsy (NAR). Data were entered into an internet-linked database for analysis by an expert system as a basis for immediate counselling by the pharmacist. RESULTS: Of 4901 participants, 3238 (66.1%) were female, and 1663 (33.9%) were male. The mean age (SD) of females and males was 52.4 (18.05), and 55.1 (17.10) years, respectively. The percentages of female and male individuals above cut-off of SDQ subscales were 11.4% and 19.8% for sleep apnoea, 40.9% and 38.7% for psychiatric sleep disorders, 59.3% and 46.8% for restless legs, and 10.4% and 9.4% for narcolepsy respectively. The prevalence of an Epworth Sleepiness Scale score >11 was 16.5% in females, and 23.9% in males. Reliability assessed by Cronbach's alpha was 0.65 to 0.78 for SDQ subscales, and for the Epworth score. CONCLUSIONS: Symptoms of sleep and wakefulness disorders among Swiss pharmacy customers were highly prevalent. The SDQ and the Epworth Sleepiness Scale score had a satisfactory reliability to be useful for identification of pharmacy customers who might benefit from information and counselling while visiting pharmacies. The internet-based system proved to be a helpful tool for the pharmacist when counselling his customers in terms of diagnostic classification and severity of symptoms associated with the sleeping and waking state

    Insular and caudate lesions release abnormal yawning in stroke patients.

    Get PDF
    Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≄3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning

    Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. Neuroimage

    No full text
    bstract Functional magnetic resonance imaging was used to investigate the relationship between cortical activation and memory load in dual sks. An n-back task at four levels of difficulty was used with auditory-verbal and visual-nonverbal material, performed separately as single sks and simultaneously as dual tasks. With reference to single tasks, activation in the prefrontal cortex (PFC) commonly increases with cremental memory load, whereas for dual tasks it has been hypothesized previously that activity in the PFC decreases in the face of cessive processing demands, i.e., if the capacity of the working memory&apos;s central executive system is exceeded. However, our results ow that during both single and dual tasks, prefrontal activation increases continuously as a function of memory load. An increase of efrontal activation was observed in the dual tasks even though processing demands were excessive in the case of the most difficult ndition, as indicated by behavioral accuracy measures. The hypothesis concerning the decrease in prefrontal activation could not be pported and was discussed in terms of motivation factors. Similar changes in load-dependent activation were observed in two other regions tside the PFC, namely in the precentral gyrus and the superior parietal lobule. The results suggest that excessive processing demands in al tasks are not necessarily accompanied by a diminution in cortical activity. 2003 Elsevier Science (USA). All rights reserved. ywords: Functional magnetic resonance imaging (fMRI); Working memory; Dual-task processing; Memory load; n-back task; Prefrontal cortex troduction Working memory (WM) refers to an on-line information ocessing system and implies temporary storage and transr of information in the service of higher order cognitive nctions such as language comprehension, planning, and oblem solving. According to Baddeley (1986), WM consts of several components and supports active maintence of information as well as executive control processes. central executive system (CES) is considered responsible for the control and the transfer of information from and to the verbal and spatial &quot;slave systems&quot; (phonological loop and visuospatial sketchpad) and is seen as being involved in the allocation and coordination of attentional resources. It is assumed that the capacity of the CES is limited. Various functional imaging studies with positron emission tomography and functional magnetic resonance imaging (fMRI) provided strong evidence of prefrontal cortex (PFC) involvement in a wide variety of tasks related to working memory (for a review, see D&apos;Esposito et al., 1998, or Fletcher an

    Movement control of manipulative tasks in patients with Gilles de la Tourette syndrome

    Get PDF
    When a hand-held object is moved, grip and load force are accurately coordinated for establishing grasp stability. In the present work, the question was raised whether patients with Gilles de la Tourette syndrome (TS), who show tic-like movements, are impaired in grip-load force control when executing a manipulative task. To this end, we assessed force regulation during action patterns that required rhythmical unimanual or bimanual (iso-directional/anti-directional) movements. Results showed that the profile of grip-load force ratio was characterized by maxima and minima that were realized at upward and downward hand positions, respectively. TS patients showed increased force ratios during unimanual and bimanual movements, compared with control subjects, indicative of an inaccurate specification of the precision grip. Functional imaging data complemented the behavioural results and revealed that secondary motor areas showed no (or greatly reduced) activation in TS patients when executing the movement tasks as compared with baseline conditions. This indicates that the metabolic level in the secondary motor areas was equal during rest and task performance. At the neuronal level, this observation suggests that these cortical areas were continuously involved in movement preparation. Based on these data, we conclude that the ongoing activation of secondary motor areas may be explained by the TS patients' involuntary urges to move. Accordingly, interference will prevent an accurate planning of voluntary behaviour. Together, these findings reveal modulations in movement organization in patients with TS and exemplify degrading consequences for manual function

    Movement control of manipulative tasks in patients with Gilles de la Tourette syndrome

    Get PDF
    When a hand‐held object is moved, grip and load force are accurately coordinated for establishing grasp stability. In the present work, the question was raised whether patients with Gilles de la Tourette syndrome (TS), who show tic‐like movements, are impaired in grip-load force control when executing a manipulative task. To this end, we assessed force regulation during action patterns that required rhythmical unimanual or bimanual (iso‐directional/anti‐directional) movements. Results showed that the profile of grip-load force ratio was characterized by maxima and minima that were realized at upward and downward hand positions, respectively. TS patients showed increased force ratios during unimanual and bimanual movements, compared with control subjects, indicative of an inaccurate specification of the precision grip. Functional imaging data complemented the behavioural results and revealed that secondary motor areas showed no (or greatly reduced) activation in TS patients when executing the movement tasks as compared with baseline conditions. This indicates that the metabolic level in the secondary motor areas was equal during rest and task performance. At the neuronal level, this observation suggests that these cortical areas were continuously involved in movement preparation. Based on these data, we conclude that the ongoing activation of secondary motor areas may be explained by the TS patients' involuntary urges to move. Accordingly, interference will prevent an accurate planning of voluntary behaviour. Together, these findings reveal modulations in movement organization in patients with TS and exemplify degrading consequences for manual functio
    corecore