81 research outputs found

    Epsilon-aminocaproic acid for treatment of fibrinolysis during liver transplantation

    Get PDF
    In 97 adult patients receiving liver transplants, the coagulation system was monitored by thrombelastography and by coagulation profile including PT; a PTT; platelet count; level of factors I, II, V, VII, VIII, IX, X, XI, and XII; fibrin degradation products; ethanol gel test; protamine gel test; and euglobulin lysis time. Preoperatively, fibrinolysis defined as a whole blood clot lysis index of less than 80% was present in 29 patients (29.9%), and a euglobulin lysis time of less than 1 h was present in 13 patients. Fibrinolysis increased progressively during surgery in 80 patients (82.5%) and was most severe on reperfusion of the graft liver in 33 patients (34%). When whole blood clot lysis (F < 180 min) was observed during reperfusion of the graft liver, blood coagulability was tested by thrombelastography using both a blood sample treated in vitro with ε-aminocaproic acid (0.09%) and an untreated sample. Blood treated with ε-aminocaproic acid showed improved coagulation without fibrinolytic activity in all 74 tests. When whole blood clot lysis time was less than 120 min, generalized oozing occurred, and the effectiveness of ε-aminocaproic acid was demonstrated in vitro during the pre-anhepatic and post-anhepatic stages, ε-aminocaproic acid (1 g, single intravenous dose) was administered. In all 20 patients treated with ε-aminocaproic acid, fibrinolytic activity disappeared; whole blood clot lysis was not seen on thrombelastography during a 5-h observation period, and whole blood clot lysis index improved from 28.5 ± 29.5% to 94.8 ± 7.4% (mean ± SD, P < 0.001). None of the treated patients had hemorrhagic or thrombotic complications. In patients undergoing liver transplantation, the judicious use of a small dose of ε-aminocaproic acid, when its efficacy was confirmed in vitro, effectively treated the severe fibrinolysis without clinical thrombotic complications

    Hemolytic Activity of pH-Responsive Polymer-Streptavidin Bioconjugates

    Get PDF
    Drug delivery systems that increase the rate and/or quantity of drug release to the cytoplasm are needed to enhance cytosolic delivery and to circumvent nonproductive cell trafficking routes. We have previously demonstrated that poly(2-ethylacrylic acid) (PEAAc) has pH-dependent hemolytic properties, and more recently, we have found that poly(2-propylacrylic acid) (PPAAc) displays even greater pH-responsive hemolytic activity than PEAAc at the acidic pHs of the early endosome. Thus, these polymers could potentially serve as endosomal releasing agents in immunotoxin therapies. In this paper, we have investigated whether the pH-dependent membrane disruptive activity of PPAAc is retained after binding to a protein. We did this by measuring the hemolytic activity of PPAAc−streptavidin model complexes with different protein to polymer stoichiometries. Biotin was conjugated to amine-terminated PPAAc, which was subsequently bound to streptavidin by biotin complexation. The ability of these samples to disrupt red blood cell membranes was investigated for a range of polymer concentrations, a range of pH values, and two polymer-to-streptavidin ratios of 3:1 and 1:1. The results demonstrate that (a) the PPAAc−streptavidin complex retains the ability to lyse the RBC lipid bilayers at low pHs, such as those existing in endosomes, and (b) the hemolytic ability of the PPAAc−streptavidin complex is similar to that of the free PPAAc

    A role for VEGF as a negative regulator of pericyte function and vessel maturation.

    Get PDF
    Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation

    A role for VEGF as a negative regulator of pericyte function and vessel maturation.

    Get PDF
    Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation

    Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering.

    No full text
    Chemical modification of the gRNA and donor DNA has great potential for improving the gene editing efficiency of Cas9 and Cpf1, but has not been investigated extensively. In this report, we demonstrate that the gRNAs of Cas9 and Cpf1, and donor DNA can be chemically modified at their terminal positions without losing activity. Moreover, we show that 5' fluorescently labeled donor DNA can be used as a marker to enrich HDR edited cells by a factor of two through cell sorting. In addition, we demonstrate that the gRNA and donor DNA can be directly conjugated together into one molecule, and show that this gRNA-donor DNA conjugate is three times better at transfecting cells and inducing HDR, with cationic polymers, than unconjugated gRNA and donor DNA. The tolerance of the gRNA and donor DNA to chemical modifications has the potential to enable new strategies for genome engineering
    corecore