47 research outputs found

    New Spirometry Indices for Detecting Mild Airflow Obstruction.

    Get PDF
    The diagnosis of chronic obstructive pulmonary disease (COPD) relies on demonstration of airflow obstruction. Traditional spirometric indices miss a number of subjects with respiratory symptoms or structural lung disease on imaging. We hypothesized that utilizing all data points on the expiratory spirometry curves to assess their shape will improve detection of mild airflow obstruction and structural lung disease. We analyzed spirometry data of 8307 participants enrolled in the COPDGene study, and derived metrics of airflow obstruction based on the shape on the volume-time (Parameter D), and flow-volume curves (Transition Point and Transition Distance). We tested associations of these parameters with CT measures of lung disease, respiratory morbidity, and mortality using regression analyses. There were significant correlations between FEV1/FVC with Parameter D (r = -0.83; p < 0.001), Transition Point (r = 0.69; p < 0.001), and Transition Distance (r = 0.50; p < 0.001). All metrics had significant associations with emphysema, small airway disease, dyspnea, and respiratory-quality of life (p < 0.001). The highest quartile for Parameter D was independently associated with all-cause mortality (adjusted HR 3.22,95% CI 2.42-4.27; p < 0.001) but a substantial number of participants in the highest quartile were categorized as GOLD 0 and 1 by traditional criteria (1.8% and 33.7%). Parameter D identified an additional 9.5% of participants with mild or non-recognized disease as abnormal with greater burden of structural lung disease compared with controls. The data points on the flow-volume and volume-time curves can be used to derive indices of airflow obstruction that identify additional subjects with disease who are deemed to be normal by traditional criteria

    Molecular Mechanisms of Paraptosis Induction: Implications for a Non-Genetically Modified Tumor Vaccine

    Get PDF
    Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF) through paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis of rat T9 glioma cells can be initiated through a large potassium channel (BK)-dependent process initiated by reactive oxygen species. Macrophage mediated cytotoxicity upon the mM-CSF expressing T9-C2 cells was not prevented by the addition of the caspase inhibitor, zVAD-fmk. By a combination of fluorescent confocal and electron microscopy, flow cytometry, electrophysiology, pharmacology, and genetic knock-down approaches, we demonstrated that these ion channels control cellular swelling and vacuolization of rat T9 glioma cells. Cell lysis is preceded by a depletion of intracellular ATP. Six-hour exposure to BK channel activation caused T9 cells to over express heat shock proteins (Hsp 60, 70, 90 and gp96). This same treatment forced HMGB1 translocation from the nuclear region to the periphery. These last molecules are “danger signals” that can stimulate immune responses. Similar inductions of mitochondrial swelling and increased Hsp70 and 90 expressions by BK channel activation were observed with the non-immunogenic F98 glioma cells. Rats injected with T9 cells which were killed by prolonged BK channel activation developed immunity against the T9 cells, while the injection of x-irradiated apoptotic T9 cells failed to produce the vaccinating effect. These results are the first to show that glioma cellular death induced by prolonged BK channel activation improves tumor immunogenicity; this treatment reproduces the vaccinating effects of mM-CSF transduced cells. Elucidation of strategies as described in this study may prove quite valuable in the development of clinical immunotherapy against cancer

    An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup

    Get PDF
    BACKGROUND. Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar "molecular phenotypes" may improve therapeutic efficacy in a COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238) , and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy

    Addressing Race in Pulmonary Function Testing by Aligning Intent and Evidence With Practice and Perception.

    No full text
    The practice of using race or ethnicity in medicine to explain differences between individuals is being called into question because it may contribute to biased medical care and research that perpetuates health disparities and structural racism. A commonly cited example is the use of race or ethnicity in the interpretation of pulmonary function test (PFT) results, yet the perspectives of practicing pulmonologists and physiologists are missing from this discussion. This discussion has global relevance for increasingly multicultural communities in which the range of values that represent normal lung function is uncertain. We review the underlying sources of differences in lung function, including those that may be captured by race or ethnicity, and demonstrate how the current practice of PFT measurement and interpretation is imperfect in its ability to describe accurately the relationship between function and health outcomes. We summarize the arguments against using race-specific equations as well as address concerns about removing race from the interpretation of PFT results. Further, we outline knowledge gaps and critical questions that need to be answered to change the current approach of including race or ethnicity in PFT results interpretation thoughtfully. Finally, we propose changes in interpretation strategies and future research to reduce health disparities
    corecore