2 research outputs found

    Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    No full text
    Lag Ba’Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds (NAC), comprising 28 elemental formulas of at least 63 structural isomers. The NAC, in combination, accounted for 50–80% of the total visible light absorption (>400 nm) by solvent extractable BrC. The results highlight that NAC, in particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of •NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC

    Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging

    No full text
    The wavelength-dependence of the complex refractive indices (RI) in the visible spectral range of secondary organic aerosols (SOA) are rarely studied, and the evolution of the RI with atmospheric aging is largely unknown. In this study, we applied a novel white light-broadband cavity enhanced spectroscopy to measure the changes in the RI (400–650 nm) of β-pinene and <i>p</i>-xylene SOA produced and aged in an oxidation flow reactor, simulating daytime aging under NO<sub><i>x</i></sub>-free conditions. It was found that these SOA are not absorbing in the visible range, and that the real part of the RI, <i>n</i>, shows a slight spectral dependence in the visible range. With increased OH exposure, <i>n</i> first increased and then decreased, possibly due to an increase in aerosol density and chemical mean polarizability for SOA produced at low OH exposures, and a decrease in chemical mean polarizability for SOA produced at high OH exposures, respectively. A simple radiative forcing calculation suggests that atmospheric aging can introduce more than 40% uncertainty due to the changes in the RI for aged SOA
    corecore