15 research outputs found

    CHARGE TRANSPORT IN MOLECULAR TUNNEL JUNCTIONS IN THE WEAK COUPLING REGIME

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (FOS

    Ultrasensitive real-time detection of Pb²⁺ ions using g-C₄N₄ nanosheets

    No full text
    The quick and easy monitoring of heavy metals in drinking water is utmost important due to their harmful effects on human health. In this work, a GaN-based high-electron-mobility transistor (HEMT) sensor has been fabricated using optical lithography and explored as a prospective sensor for the determination of trace Pb2+ ions present in the water. Graphitic carbon nitride (g-C3N4) was synthesized by a single-step combustion method. The g-C3N4 nanosheets were used to functionalize the gate area of the fabricated GaN HEMT sensor to investigate the presence of Pb2+ metal ions in water. The g-C3N4 functionalized sensor exhibited a sensitivity of around 0.46A /ppb with 0.32 ppb, as the limit of detection (LoD) is much below the international set standards. Moreover, the real-time measurements on lake water were performed using the developed GaN HEMT sensor to detect the presence of Pb2+ ions in real samples in a fast and ultrasensitive manner. We anticipate that the reported work will certainly serve as a proof-of-concept to develop heavy metal ion sensors.This work was supported by the Abdul Kalam Technology Innovation Fellowship under Grant INAE/121/AKF/46

    The Role of Structural Order in the Mechanism of Charge Transport across Tunnel Junctions with Various Iron-Storing Proteins

    Get PDF
    In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide and ferrihydrite nanoparticles (NPs) present in ferritin and E2-LFtn, which is E2 protein engineered with an iron-binding sequence) play an important role in the mechanism of CT. At the same time, the NP core also plays a major role in the structural integrity of the proteins. This paper describes the role of structural order in CT across tunnel junctions by comparing three iron-storing proteins. They are (1) DNA binding protein from starved cells (Dps, diameter (∅) = 9 nm); (2) engineered archaeal ferritin (AfFtn-AA, ∅ = 12 nm); and (3) engineered E2 of pyruvate dehydrogenase enzyme complex (E2-LFtn, ∅ = 25 nm). Both holo-Dps and apo-Dps proteins undergo CT by coherent tunneling because their globular architecture and relative structural stability provide a coherent conduction pathway. In contrast, apo-AfFtn-AA forms a disordered structure across which charges have to tunnel incoherently, but holo-AfFtn-AA retains its globular structure and supports coherent tunneling. The large E2-LFtn always forms disordered structures across which charges incoherently tunnel regardless of the presence of the NP core. These findings highlight the importance of structural order in the mechanism of CT across biomolecular tunnel junctions

    Switching of the mechanism of charge transport induced by phase transitions in tunnel junctions with large biomolecular cages

    Get PDF
    Tunnel junctions based on Fe storing globular proteins are an interesting class of biomolecular tunnel junctions due to their tunable Fe ion loading, symmetrical structure and thermal stability, and are therefore attractive to study the mechanisms of charge transport (CT) at the molecular level. This paper describes a temperature-induced change in the CT mechanism across junctions with large globular (∼25 nm in diameter) E2-proteins bioengineered with Fe-binding peptides from ferritin (E2-LFtn) to mineralise Fe ions in the form of iron oxide nanoparticles (NPs) inside the protein's cavity. The iron oxide NPs provide accessible energy states that support high CT rates and shallow activation barriers. Interestingly, the CT mechanism changes abruptly, but reversibly, from incoherent tunnelling (which is thermally activated) to coherent tunnelling (which is activationless) across the E2-LFtn-based tunnel junctions with the highest Fe ion loading at a temperature of 220-240 K. During this transition the current density across the junctions increases by a factor of 13 at an applied voltage of V = -0.8 V. X-ray absorption spectroscopy indicates that the iron oxide NPs inside the E2-LFtn cages undergo a reversible phase transition; this phase transition opens up new a tunnelling pathway changing the mechanism of CT from thermally activated to activationless tunnelling despite the large size of the E2-LFtn and associated distance for tunnelling. This journal is </p

    Temperature-Dependent Coherent Tunneling across Graphene-Ferritin Biomolecular Junctions

    No full text
    Understanding the mechanisms of charge transport (CT) across biomolecules in solid-state devices is imperative to realize biomolecular electronic devices in a predictive manner. Although it is well-Accepted that biomolecule-electrode interactions play an essential role, it is often overlooked. This paper reveals the prominent role of graphene interfaces with Fe-storing proteins in the net CT across their tunnel junctions. Here, ferritin (AfFtn-AA) is adsorbed on the graphene by noncovalent amine-graphene interactions confirmed with Raman spectroscopy. In contrast to junctions with metal electrodes, graphene has a vanishing density of states toward its intrinsic Fermi level ("Dirac point"), which increases away from the Fermi level. Therefore, the amount of charge carriers is highly sensitive to temperature and electrostatic charging (induced doping), as deduced from a detailed analysis of CT as a function of temperature and iron loading. Remarkably, the temperature dependence can be fully explained within the coherent tunneling regime due to excitation of hot carriers. Graphene is not only demonstrated as an alternative platform to study CT across biomolecular tunnel junctions, but it also opens rich possibilities in employing interface electrostatics in tuning CT behavior

    Role of Order in the Mechanism of Charge Transport across Single-Stranded and Double-Stranded DNA Monolayers in Tunnel Junctions

    Get PDF
    Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions. </p

    Temperature-Dependent Coherent Tunneling across Graphene–Ferritin Biomolecular Junctions

    Get PDF
    Understanding the mechanisms of charge transport (CT) across biomolecules in solid-state devices is imperative to realize biomolecular electronic devices in a predictive manner. Although it is well-accepted that biomolecule–electrode interactions play an essential role, it is often overlooked. This paper reveals the prominent role of graphene interfaces with Fe-storing proteins in the net CT across their tunnel junctions. Here, ferritin (AfFtn-AA) is adsorbed on the graphene by noncovalent amine–graphene interactions confirmed with Raman spectroscopy. In contrast to junctions with metal electrodes, graphene has a vanishing density of states toward its intrinsic Fermi level (“Dirac point”), which increases away from the Fermi level. Therefore, the amount of charge carriers is highly sensitive to temperature and electrostatic charging (induced doping), as deduced from a detailed analysis of CT as a function of temperature and iron loading. Remarkably, the temperature dependence can be fully explained within the coherent tunneling regime due to excitation of hot carriers. Graphene is not only demonstrated as an alternative platform to study CT across biomolecular tunnel junctions, but it also opens rich possibilities in employing interface electrostatics in tuning CT behavior
    corecore