19 research outputs found

    Phase mixing in MOND

    Get PDF
    Dissipationless collapses in Modified Newtonian Dynamics (MOND) have been studied by using our MOND particle-mesh N-body code, finding that the projected density profiles of the final virialized systems are well described by Sersic profiles with index m<4 (down to m~2 for a deep-MOND collapse). The simulations provided also strong evidence that phase mixing is much less effective in MOND than in Newtonian gravity. Here we describe "ad hoc" numerical simulations with the force angular components frozen to zero, thus producing radial collapses. Our previous findings are confirmed, indicating that possible differences in radial orbit instability under Newtonian and MOND gravity are not relevant in the present context.Comment: 10 pages, 3 figures. To appear in the Proceedings of the International Workshop "Collective Phenomena in Macroscopic Systems", G. Bertin, R. Pozzoli, M. Rome, and K.R. Sreenivasan, eds., World Scientific, Singapor

    Dissipationless collapses in MOND

    Get PDF
    Dissipationless collapses in Modified Newtonian Dynamics (MOND) are studied by using a new particle-mesh N-body code based on our numerical MOND potential solver. We found that low surface-density end-products have shallower inner density profile, flatter radial velocity-dispersion profile, and more radially anisotropic orbital distribution than high surface-density end-products. The projected density profiles of the final virialized systems are well described by Sersic profiles with index m~4, down to m~2 for a deep-MOND collapse. Consistently with observations of elliptical galaxies, the MOND end-products, if interpreted in the context of Newtonian gravity, would appear to have little or no dark matter within the effective radius. However, we found impossible (under the assumption of constant mass-to-light ratio) to simultaneously place the resulting systems on the observed Kormendy, Faber-Jackson and Fundamental Plane relations of elliptical galaxies. Finally, the simulations provide strong evidence that phase mixing is less effective in MOND than in Newtonian gravity

    Dissipationless collapse, weak homology and central cores of elliptical galaxies

    Get PDF
    By means of high-resolution N-body simulations we revisited the dissipationless collapse scenario for galaxy formation. We considered both single-component collapses and collapses of a cold stellar distribution in a live dark matter halo. Single-component collapses lead to stellar systems whose projected profiles are fitted very well by the Sersic R^(1/m) law with 3.6 < m < 8. The stellar end-products of collapses in a dark matter halo are still well described by the R^(1/m) law, but with 1.9 < m < 12, where the lowest m values are obtained when the halo is dominant. In all the explored cases the profiles at small radii deviate from their global best-fit R^(1/m) model, being significantly flatter. The break-radius values are comparable with those measured in `core' elliptical galaxies, and are directly related to the coldness of the initial conditions. The dissipationless collapse of initially cold stellar distributions in pre-existing dark matter haloes may thus have a role in determining the observed weak homology of elliptical galaxies.Comment: Accepted for publication in MNRAS (11 pages, 10 figures

    N-body simulations in modified Newtonian dynamics

    Full text link
    We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.Comment: 4 pages, no figures. To appear in EAS Publication Series (Proceedings of Symposium 7 of the JENAM 2008, Vienna

    Galactic fountains and gas accretion

    Full text link
    Star-forming disc galaxies such as the Milky Way need to accrete \gsim 1 M⊙M_{\odot} of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from these clouds and the stripped gas causes coronal gas to condense in the cloud's wake. For likely parameters of the Galactic corona and of typical fountain clouds we obtain a global accretion rate of the order of that required to feed the star formation.Comment: 2 pages, 1 figure, to appear in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popescu, AIP Conf. Se

    Fountain-driven gas accretion by the Milky Way

    Full text link
    Accretion of fresh gas at a rate of ~ 1 M_{sun} yr^{-1} is necessary in star-forming disc galaxies, such as the Milky Way, in order to sustain their star-formation rates. In this work we present the results of a new hydrodynamic simulation supporting the scenario in which the gas required for star formation is drawn from the hot corona that surrounds the star-forming disc. In particular, the cooling of this hot gas and its accretion on to the disc are caused by the passage of cold galactic fountain clouds through the corona.Comment: 2 pages, 1 figure. To appear in the proceedings of the conference "Assembling the Puzzle of the Milky Way", Le Grand-Bornand 17-22 April 2011, European Physical Journal, editors C. Reyl\'e, A. Robin and M. Schulthei

    Axisymmetric and triaxial MOND density-potential pairs

    Full text link
    We present a simple method, based on the deformation of spherically symmetric potentials, to construct explicit axisymmetric and triaxial MOND density-potential pairs. General guidelines to the choice of suitable deformations, so that the resulting density distribution is nowhere negative, are presented. This flexible method offers for the first time the possibility to study the MOND gravitational field for sufficiently general and realistic density distributions without resorting to sophisticated numerical codes. The technique is illustrated by constructing the MOND density-potential pair for a triaxial galaxy model that, in the absence of deformation, reduces to the Hernquist sphere. Such analytical solutions are also relevant to test and validate numerical codes. Here we present a new numerical potential solver designed to solve the MOND field equation for arbitrary density distributions: the code is tested with excellent results against the analytic MOND triaxial Hernquist model and the MOND razor-thin Kuzmin disk, and a simple application is finally presented.Comment: 21 pages, 5 figures. Accepted for publication in the Astrophysical Journa

    Dissipationless collapses in Modified Newtonian Dynamics

    No full text
    Dissipationless collapses in Modified Newtonian Dynamics (MOND) are studied by using a new particle-mesh N-body code based on our numerical MOND potential solver. We found that low surface-density end-products have shallower inner density profile, flatter radial velocity-dispersion profile, and more radially anisotropic orbital distribution than high surface-density end-products. The projected density profiles of the final virialized systems are well described by Sersic profiles with index m~4, down to m~2 for a deep-MOND collapse. Consistently with observations of elliptical galaxies, the MOND end-products, if interpreted in the context of Newtonian gravity, would appear to have little or no dark matter within the effective radius. However, we found impossible (under the assumption of constant mass-to-light ratio) to simultaneously place the resulting systems on the observed Kormendy, Faber-Jackson and Fundamental Plane relations of elliptical galaxies. Finally, the simulations provide strong evidence that phase mixing is less effective in MOND than in Newtonian gravity.Comment: 15 pages, 6 figures, Accepted for publication in Ap
    corecore