59 research outputs found

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    REMARKS ON ADAPTIVE FOURIER DECOMPOSITION

    No full text

    Model Predictive Control Applied to Constraint Handling in Active Noise and Vibration Control

    No full text
    Abstract — The difficulties imposed by actuator limitations in a range of active vibration and noise control problems are well recognized. This paper proposes and examines a new approach of employing Model Predictive Control (MPC). MPC permits limitations on allowable control action to be explicitly included in the computation of an optimal control action. Such techniques have been widely and successfully applied in many other areas. However, due to the relatively high computational requirements of MPC, existing applications have been limited to systems with slow dynamics. This paper illustrates that MPC can be implemented on inexpensive hardware at high sampling rates using traditional online quadratic programming methods for nontrivial models and with significant control performance dividends

    System Identification Software

    No full text
    corecore