105 research outputs found

    The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    Get PDF
    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 Ă— 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample

    Slope Position Rather Than Thinning Intensity Affects Arbuscular Mycorrhizal Fungi (AMF) Community in Chinese Fir Plantations

    Get PDF
    Background and Objectives: Arbuscular mycorrhizal fungi (AMF) play a crucial role in individual plant capability and whole ecosystem sustainability. Chinese fir, one of the most widely planted tree species in southern China, forms associations with AMF. However, it is still unclear what impacts thinning management applied to Chinese fir plantations has on the structure and diversity of soil AMF communities. This research attempts to bridge this knowledge gap. Materials and Methods: A thinning experiment was designed on different slope positions in Chinese fir plantations to examine the impacts of slope position and thinning intensity on colonization, diversity, and community composition of AMF. Results: Our research showed that the altitudinal slope position had significant effects on colonization, diversity, and community composition of AMF in Chinese fir plantations. In addition, the interaction between slope position and thinning intensity had significant effects on AMF diversity. Colonization by AMF on the lower slope position was significantly higher than on the upper slope position, while AMF diversity on the upper slope position was higher than on the middle and lower slope positions. Glomus was the most abundant genus in all slope positions, especially on the middle and lower slope positions. The relative abundance of Diversispora was significantly different among slope positions with absolute dominance on the upper slope position. Scutellospora was uniquely found on the upper slope position. Furthermore, soil Mg and Mn contents and soil temperature positively affected AMF community composition at the operational taxonomic unit (OTU) level. Conclusions: These findings suggested that slope position should be considered in the management of Chinese fir plantations. Furthermore, both chemical fertilization and AMF augmentation should be undertaken on upper hill slope positions as part of sustainable management practices for Chinese fir plantations

    Time-reversal symmetry breaking driven topological phase transition in EuB6_6

    Full text link
    The interplay between time-reversal symmetry (TRS) and band topology plays a crucial role in topological states of quantum matter. In time-reversal-invariant (TRI) systems, the inversion of spin-degenerate bands with opposite parity leads to nontrivial topological states, such as topological insulators and Dirac semimetals. When the TRS is broken, the exchange field induces spin splitting of the bands. The inversion of a pair of spin-splitting subbands can generate more exotic topological states, such as quantum anomalous Hall insulators and magnetic Weyl semimetals. So far, such topological phase transitions driven by the TRS breaking have not been visualized. In this work, using angle-resolved photoemission spectroscopy, we have demonstrated that the TRS breaking induces a band inversion of a pair of spin-splitting subbands at the TRI points of Brillouin zone in EuB6_6, when a long-range ferromagnetic order is developed. The dramatic changes in the electronic structure result in a topological phase transition from a TRI ordinary insulator state to a TRS-broken topological semimetal (TSM) state. Remarkably, the magnetic TSM state has an ideal electronic structure, in which the band crossings are located at the Fermi level without any interference from other bands. Our findings not only reveal the topological phase transition driven by the TRS breaking, but also provide an excellent platform to explore novel physical behavior in the magnetic topological states of quantum matter.Comment: 22 pages, 7 figures, accepted by Phys. Rev.

    Giant tunability of the two-dimensional electron gas at the interface of Îł-Al<sub>2</sub>O<sub>3</sub>/SrTiO<sub>3</sub>

    Get PDF
    Herein, we reported giant tunability of the physical properties of 2DEGs at the spinel/perovskite interface of {\gamma}-Al2O3/SrTiO3 (GAO/STO). By modulating the carrier density thus the band filling with ionic-liquid gating, the system experiences a Lifshitz transition at a critical carrier density of 3E13 cm-2, where a remarkably strong enhancement of Rashba spin-orbit interaction and an emergence of Kondo effect at low temperatures are observed. Moreover, as the carrier concentration depletes with decreasing gating voltage, the electron mobility is enhanced by more than 6 times in magnitude, leading to the observation of clear quantum oscillations. The great tunability of GAO/STO interface by EDLT gating not only shows promise for design of oxide devices with on-demand properties, but also sheds new light on the electronic structure of 2DEG at the non-isostructural spinel/perovskite interface.Comment: Nano Letters 201

    Short Telomeres Compromise β-Cell Signaling and Survival

    Get PDF
    The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca2+ influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16INK4a. Specifically, we identified gene expression changes in pathways which are essential for Ca2+-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis
    • …
    corecore