2 research outputs found

    Control of spatially homogeneous distribution of heteroatoms to produce red TiO2 photocatalyst for visible-light photocatalytic water splitting

    Get PDF
    The authors thank National Natural Science Fundation of China (Nos. 51825204, 51572266, 21633009, 51629201), the Major Basic Research Program, Ministry of Science and Technology of China (2014CB239401), the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-JSC039) for the financial support. G. L. is grateful for the award of the Newton Advanced Fellowship.The strong band-to-band absorption of photocatalysts spanning the whole visible light region (400-700 nm) is critically important for solar-driven photocatalysis. Although it is actively and widely used as photocatalyst for various reactions in the past four decades, TiO2 has a very poor ability to capture the whole-spectrum visible light. Here, by controlling the spatially homogeneous distribution of boron and nitrogen heteroatoms in anatase TiO2 microspheres with a predominance of high-energy {001} facets, a strong visible light absorption spectrum with a sharp edge beyond 680 nm is achieved. The red TiO2 with the homogeneous doping of boron and nitrogen obtained shows no increase in defects like Ti3+ that are commonly observed in doped TiO2. More importantly, it has the ability to induce photocatalytic water oxidation to produce oxygen under the irradiation of visible light beyond 550 nm and also photocatalytic reducing water to produce hydrogen under visible light. These results demonstrate the great promise of using the red TiO2 for visible light photocatalytic water splitting and also provide an attractive strategy for realizing the wide-spectrum visible light absorption of wide-bandgap oxide photocatalysts.PostprintPeer reviewe

    Sh3rf2 Haploinsufficiency Leads to Unilateral Neuronal Development Deficits and Autistic-Like Behaviors in Mice

    No full text
    Summary: Autism spectrum disorders (ASDs) include a variety of developmental brain disorders with clinical findings implicating the dysfunction of the left hemisphere. Here, we generate mice lacking one copy of Sh3rf2, which was detected in ASD patients, to determine whether Sh3rf2 is involved in brain development and whether mutation of SH3RF2 is causative for ASD and the mechanisms linking it to ASD traits. We find that mice with Sh3rf2 haploinsufficiency display significant deficits in social interaction and communication, as well as stereotyped or repetitive behaviors and hyperactivity and seizures. Disturbances in hippocampal dendritic spine development, aberrant composition of glutamatergic receptor subunits, and abnormal excitatory synaptic transmission were detected in heterozygous mutants. Remarkably, these defects are selectively unilateral. Our results support a notion that Sh3rf2 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis most likely resulting from deficits in synaptic function in the left hemisphere of the brain. : Wang et al. find that Sh3rf2 is important for neuron development and that Sh3rf2 haploinsufficiency in mice results in typical ASD-like behaviors, as well as selective unilateral disturbances in hippocampal dendritic spine development, composition of glutamatergic receptor subunits, and excitatory synaptic transmission. Keywords: autism spectrum disorders, Sh3rf2/POSHER, brain development, synaptic functio
    corecore