4,274 research outputs found

    r-Process Nucleosynthesis in Shocked Surface Layers of O-Ne-Mg Cores

    Full text link
    We demonstrate that rapid expansion of the shocked surface layers of an O-Ne-Mg core following its collapse can result in r-process nucleosynthesis. As the supernova shock accelerates through these layers, it makes them expand so rapidly that free nucleons remain in disequilibrium with alpha-particles throughout most of the expansion. This allows heavy r-process isotopes including the actinides to form in spite of the very low initial neutron excess of the matter. We estimate that yields of heavy r-process nuclei from this site may be sufficient to explain the Galactic inventory of these isotopes.Comment: 11 pages, 1 figure, to appear in the Astrophysical Journal Letter

    Collaborative Inference of Coexisting Information Diffusions

    Full text link
    Recently, \textit{diffusion history inference} has become an emerging research topic due to its great benefits for various applications, whose purpose is to reconstruct the missing histories of information diffusion traces according to incomplete observations. The existing methods, however, often focus only on single information diffusion trace, while in a real-world social network, there often coexist multiple information diffusions over the same network. In this paper, we propose a novel approach called Collaborative Inference Model (CIM) for the problem of the inference of coexisting information diffusions. By exploiting the synergism between the coexisting information diffusions, CIM holistically models multiple information diffusions as a sparse 4th-order tensor called Coexisting Diffusions Tensor (CDT) without any prior assumption of diffusion models, and collaboratively infers the histories of the coexisting information diffusions via a low-rank approximation of CDT with a fusion of heterogeneous constraints generated from additional data sources. To improve the efficiency, we further propose an optimal algorithm called Time Window based Parallel Decomposition Algorithm (TWPDA), which can speed up the inference without compromise on the accuracy by utilizing the temporal locality of information diffusions. The extensive experiments conducted on real world datasets and synthetic datasets verify the effectiveness and efficiency of CIM and TWPDA

    Ultraprecise Rydberg atomic localization using optical vortices

    Full text link
    We propose a robust localization of the highly-excited Rydberg atoms, interacting with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based localization methods, a vortex beam can provide an ultrahigh-precision two-dimensional localization solely in the zero-intensity center, within a confined excitation region down to the nanometer scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively much stronger confinement towards a high spatial resolution when it is partially compensated by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon detuning allows a three-dimensional confinement of Rydberg atoms. In this case, the vortex field provides a transverse confinement while the SW modulation of the two-photon detuning localizes the Rydberg atoms longitudinally. To develop a new subwavelength localization technique, our results pave one-step closer to reduce excitation volumes to the level of a few nanometers, representing a feasible implementation for the future experimental applications.Comment: oe in pres

    Existence Result for Impulsive Differential Equations with Integral Boundary Conditions

    Get PDF
    We investigate the following differential equations: -(y[1](x))'+q(x)y(x)=λf(x,y(x)), with impulsive and integral boundary conditions -Δ(y[1](xi))=Ii(y(xi)), i=1,2,…,m, y(0)-ay[1](0)=∫0ωg0(s)y(s)ds, y(ω)-by[1](ω)=∫0ωg1(s)y(s)ds, where y[1](x)=p(x)y'(x). The expression of Green's function and the existence of positive solution for the system are obtained. Upper and lower bounds for positive solutions are also given. When p(t), I(·), g0(s), and g1(s) take different values, the system can be simplified to some forms which has been studied in the works by Guo and LakshmiKantham (1988), Guo et al. (1995), Boucherif (2009), He et al. (2011), and Atici and Guseinov (2001). Our discussion is based on the fixed point index theory in cones

    Semantic Segmentation on VSPW Dataset through Contrastive Loss and Multi-dataset Training Approach

    Full text link
    Video scene parsing incorporates temporal information, which can enhance the consistency and accuracy of predictions compared to image scene parsing. The added temporal dimension enables a more comprehensive understanding of the scene, leading to more reliable results. This paper presents the winning solution of the CVPR2023 workshop for video semantic segmentation, focusing on enhancing Spatial-Temporal correlations with contrastive loss. We also explore the influence of multi-dataset training by utilizing a label-mapping technique. And the final result is aggregating the output of the above two models. Our approach achieves 65.95% mIoU performance on the VSPW dataset, ranked 1st place on the VSPW challenge at CVPR 2023.Comment: 1st Place Solution for CVPR 2023 PVUW VSS Trac

    Mobile Storm: Distributed Real-Time Stream Processing for Mobile Clouds

    Get PDF
    Recent advances in mobile technologies have enabled a plethora of new applications. The hardware capabilities of mobile devices, however, are still insufficient for real-time stream data processing (e.g., real-time video stream). In order to process real-time streaming data, most existing applications offload the data and computation to a remote cloud service, such as Apache Storm or Apache Spark Streaming. Offloading streaming data, however, has high costs for users, e.g., significant service fees and battery consumption. To address these challenges, we design, implement and evaluate Mobile Storm, the first stream processing platform for mobile clouds, leveraging clusters of local mobile devices to process real-time stream data. In Mobile Storm, we model the workflow of a real-time stream processing job and decompose it into several tasks so that the job can be executed concurrently and in a distributed manner on multiple mobile devices. Mobile Storm was implemented on Android phones and evaluated extensively through a real-time HD video processing application. The result shows that Mobile Storm effectively processes HD Video Stream in a mobile cloud, which would be impossible on a single mobile device
    • …
    corecore