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We investigate the following differential equations: −(𝑦[1](𝑥)) + 𝑞(𝑥)𝑦(𝑥) = 𝜆𝑓(𝑥, 𝑦(𝑥)), with impulsive and integral boundary
conditions −Δ(𝑦[1](𝑥𝑖)) = 𝐼𝑖(𝑦(𝑥𝑖)), 𝑖 = 1, 2, . . . , 𝑚, 𝑦(0) − 𝑎𝑦

[1]
(0) = ∫

𝜔

0
𝑔0(𝑠)𝑦(𝑠)𝑑𝑠, 𝑦(𝜔) − 𝑏𝑦

[1]
(𝜔) = ∫

𝜔

0
𝑔1(𝑠)𝑦(𝑠)𝑑𝑠, where

𝑦

[1]
(𝑥) = 𝑝(𝑥)𝑦


(𝑥). The expression of Green’s function and the existence of positive solution for the system are obtained. Upper

and lower bounds for positive solutions are also given. When 𝑝(𝑡), 𝐼(⋅), 𝑔0(𝑠), and 𝑔1(𝑠) take different values, the system can be
simplified to some forms which has been studied in the works by Guo and LakshmiKantham (1988), Guo et al. (1995), Boucherif
(2009), He et al. (2011), and Atici and Guseinov (2001). Our discussion is based on the fixed point index theory in cones.

1. Introduction

The theory of impulsive differential equations in abstract
spaces has become a new important branch and has devel-
oped rapidly (see [1–4]). As an important aspect, impulsive
differential equations with boundary value problems have
gained more attention. In recent years, experiments in a
variety of different areas (especially in applied mathematics
and physics) show that integral boundary conditions can
represent the model more accurately. And researchers have
obtained many good results in this field.

In this paper, we study the existence of positive solutions
for the following system:

−(𝑦

[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = 𝜆𝑓 (𝑥, 𝑦 (𝑥)) , 𝑥 ̸= 𝑥𝑖, 𝑥 ∈ 𝐽

−
,

−Δ (𝑦

[1]
(𝑥𝑖)) = 𝐼𝑖 (𝑦 (𝑥𝑖)) , 𝑖 = 1, 2, . . . , 𝑚,

𝑦 (0) − 𝑎𝑦

[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

𝑦 (𝜔) − 𝑏𝑦

[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

(1)

where 𝑦[1](𝑥) = 𝑝(𝑥)𝑦(𝑥), 𝐽− = 𝐽 \ {𝑥1, 𝑥2, . . . , 𝑥𝑚}, 𝐽 =
[0, 𝜔], 0 < 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑚 < 𝜔, 𝑓 ∈ 𝐶(𝐽 × 𝑅

+
, 𝑅

+
). 𝑦(𝑥),

𝑦

[1]
(𝑥) are left continuous at 𝑥 = 𝑥𝑖, Δ(𝑦

[1]
(𝑥𝑖)) = 𝑦

[1]
(𝑥

+
𝑖 ) −

𝑦

[1]
(𝑥

−
𝑖 ). 𝐼𝑖 ∈ 𝐶(𝑅

+
, 𝑅

+
). And 𝑎 > 0, 𝑏 < 0, 𝑔0, 𝑔1 : [0, 1] →

[0,∞) are continuous and positive functions.
When 𝑝(𝑡), 𝐼(⋅), 𝑔0(𝑠), and 𝑔1(𝑠) take different values,

the system can be simplified to some forms which have
been studied. For example, [5–10] discussed the existence of
positive solution in case 𝑝(𝑡) = 1.

Let 𝑝(𝑡) = 1, 𝑔0, 𝑔1 = 0, [11, 12] investigated the system
with only one impulse. Reference [13] studied the system
when 𝐼(⋅) = 0, 𝑔0, 𝑔1 = 0. Readers can read the papers in
[13] for details.

Throughout the rest of the paper, we assume 𝜔 is a fixed
positive number, and 𝜆 is a parameter. 𝑝(𝑥), 𝑞(𝑥) are real-
valued measurable functions defined on 𝐽, and they satisfy
the following condition:

(H1) 𝑝(𝑥) > 0, 𝑞(𝑥) ≥ 0, 𝑞(𝑥) ̸≡ 0 almost everywhere,
and

∫

𝜔

0

1

𝑝 (𝑥)

𝑑𝑥 < ∞, ∫

𝜔

0

𝑞 (𝑥) 𝑑𝑥 < ∞. (2)

This paper aims to obtain the positive solution for (1).
In Section 2, we introduce some lemmas and notations. In
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particular, the expression and some properties of Green’s
functions are investigated. After the preparatory work, we
draw the main results in Section 3.

2. Preliminaries

Theorem 1 (Krasnoselskii’s fixed point theorem). Let 𝐸 be a
Banach space and 𝐶 ∈ 𝐸. Assume Ω1, Ω2 are open sets in 𝐸
with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and 𝑆 : 𝐶⋂(Ω2 \ Ω1) → 𝐶 be a
completely continuous operator such that either

(i) ‖𝑠(𝑦)‖ ≤ ‖𝑦‖, 𝑦 ∈ 𝐶 ∩ 𝜕Ω1, and ‖𝑠(𝑦)‖ ≥ ‖𝑦‖, 𝑦 ∈
𝐶 ∩ 𝜕Ω2; or

(ii) ‖𝑠(𝑦)‖ ≥ ‖𝑦‖, 𝑦 ∈ 𝐶 ∩ 𝜕Ω1, and ‖𝑠(𝑦)‖ ≤ ‖𝑦‖, 𝑦 ∈
𝐶 ∩ 𝜕Ω2.

Then 𝑆 has a fixed point in 𝐶⋂(Ω2 \ Ω1).

Definition 2. For two differential functions 𝑦 and 𝑧, we
defined their Wronskian by

𝑊𝑥 (𝑦, 𝑧) = 𝑦 (𝑥) 𝑧
[1]
(𝑥) − 𝑦

[1]
(𝑥) 𝑧 (𝑥)

= 𝑝 (𝑥) [𝑦 (𝑥) 𝑧


(𝑥) − 𝑦


(𝑥) 𝑧 (𝑥)] .

(3)

Consider the linear nonhomogeneous problem of the
form

−(𝑦

[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = ℎ (𝑥) , 𝑥 ∈ 𝐽.

(4)

Its corresponding homogeneous equation is

−(𝑦

[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = 0, 𝑥 ∈ 𝐽.

(5)

Lemma 3. Suppose that 𝑦1 and 𝑦2 form a fundamental set of
solutions for the homogeneous problem (5). Then the general
solution of the nonhomogeneous problem (4) is given by

𝑦 (𝑥) = 𝑐1𝑦1 (𝑥) + 𝑐2𝑦2 (𝑥)

+ ∫

𝑥

0

𝑦1 (𝑥) 𝑦2 (𝑠) − 𝑦1 (𝑠) 𝑦2 (𝑥)

𝑤𝑠 (𝑦1, 𝑦2)
ℎ (𝑠) 𝑑𝑠,

(6)

where 𝑐1 and 𝑐2 are arbitrary constants.

Proof. We just need to show that the function

𝑧 (𝑥) = ∫

𝑥

0

𝑦1 (𝑥) 𝑦2 (𝑠) − 𝑦1 (𝑠) 𝑦2 (𝑥)

𝑤𝑠 (𝑦1, 𝑦2)
ℎ (𝑠) 𝑑𝑠 (7)

is a particular solution of (4). From (7), we have for𝑥 ∈ [0, 𝜔],

𝑧


(𝑥) = ∫

𝑥

0

𝑦


1 (𝑥) 𝑦2 (𝑠) − 𝑦1 (𝑠) 𝑦


2 (𝑥)

𝑤𝑠 (𝑦1, 𝑦2)
ℎ (𝑠) 𝑑𝑠,

(8)

[𝑝 (𝑥) 𝑧


(𝑥)]


= −ℎ (𝑥) + 𝑞 (𝑥) 𝑧 (𝑥) .

(9)

Besides, from (7) and (8), we have

𝑧 (0) = 0, 𝑧

[1]
(0) = 0.

(10)

Thus, 𝑧(𝑥) satisfies (4).

Consider the following boundary value problem with
integral boundary conditions:

−(𝑦

[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = ℎ (𝑥) , 𝑥 ∈ 𝐽,

𝑦 (0) − 𝑎𝑦

[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝜎0 (𝑠) 𝑑𝑠,

𝑦 (𝜔) − 𝑏𝑦

[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝜎1 (𝑠) 𝑑𝑠.

(11)

Denote by 𝑢(𝑥) and 𝑣(𝑥) the solutions of the homogenous
equation (5) satisfying the initial conditions

𝑢 (0) = 𝑎, 𝑢

[1]
(0) = 1,

𝑣 (𝜔) = −𝑏, 𝑣

[1]
(𝜔) = −1.

(12)

(H2) Let 𝑥, 𝑠 ∈ 𝐽, denote a function

𝜙 (𝑥, 𝑠) =

𝑢 (𝑥)

𝑢 (𝜔) − 𝑏𝑢

[1]
(𝜔)

𝑔1 (𝑠) +
𝑣 (𝑥)

𝑣 (0) − 𝑎𝑣

[1]
(0)

𝑔0 (𝑠)

(13)

satisfies 0 ≤ 𝜙(𝑥, 𝑠) < 1/𝜔.
For convenience, we denote 𝑚 := min{𝜙(𝑥, 𝑠); 𝑥, 𝑠 ∈ 𝐽},

𝑀 := max{𝜙(𝑥, 𝑠); 𝑥, 𝑠 ∈ 𝐽}.

Lemma 4. Let 𝐾(𝑥, 𝑠) be a nonnegative continuous function
defined for −∞ < 𝑥1 ≤ 𝑥, 𝑠 ≤ 𝑥2 < ∞ and 𝜓(𝑥) a
nonnegative integrable function on [𝑥1, 𝑥2]. Then for arbitrary
nonnegative continuous function 𝜑(𝑥) defined on [𝑥1, 𝑥2], the
Volterra integral equation

𝑦 (𝑥) = 𝜑 (𝑥) + ∫

𝑥

𝑥
1

𝐾 (𝑥, 𝑠) 𝜓 (𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑥1 ≤ 𝑥 ≤ 𝑥2

(14)

has a unique solution 𝑦(𝑥). Moreover, this solution is continu-
ous and satisfied the inequality

𝑦 (𝑥) ≥ 𝜑 (𝑥) , 𝑥1 ≤ 𝑥 ≤ 𝑥2. (15)

Proof. We solve (14) by the method of successive approxima-
tions setting

𝑦0 (𝑥) = 𝜑 (𝑥) ,

𝑦𝑛 = ∫

𝑥

𝑥
1

𝐾 (𝑥, 𝑠) 𝜓 (𝑠) 𝑦𝑛−1 (𝑠) 𝑑𝑠, 𝑛 = 1, 2, . . . .

(16)

If the series ∑∞𝑛=0 𝑦𝑛(𝑥) converges uniformly with respect to
𝑥 ∈ [𝑥1, 𝑥2], then its sum will be, obviously, a continuous
solution of (14). To prove the uniform convergence of this
series, we put

max
𝑥
1
⩽𝑥⩽𝑥

2

𝜑 (𝑥) = 𝑐, max
𝑥
1
⩽𝑥,𝑠⩽𝑥

2

𝐾 (𝑥, 𝑠) = 𝑐1. (17)

Then it is easy to get from (16) that

0 ⩽ 𝑦𝑛 (𝑥) ⩽ 𝑐
𝑐

𝑛
1

𝑛!

[∫

𝑥

𝑥
1

𝜓 (𝑠) 𝑑𝑠]

𝑛

, 𝑛 = 0, 1, 2, . . . . (18)
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Hence it follows that (14) has a continuous solution

𝑦 (𝑥) =

∞

∑

𝑛=0

𝑦𝑛 (𝑥) (19)

and because 𝑦0 = 𝜑(𝑥), 𝑦𝑛 ≥ 0, 𝑛 = 1, 2, . . ., for this solution
the inequality (15) holds. Uniqueness of the solution of (14)
can be proved in a usual way. The proof is complete.

Remark 5. Evidently, the statement of Lemma 4 is also valid
for the Volterra equation of the form

𝑦 (𝑥) = 𝜑 (𝑥) + ∫

𝑥
2

𝑥

𝐾 (𝑥, 𝑠) 𝜓 (𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑥1 ≤ 𝑥 ≤ 𝑥2.

(20)

Lemma 6. For the solution 𝑦(𝑥) of the BVP (11), the formula

𝑦 (𝑥) = 𝑤 (𝑥) + ∫

𝜔

0

𝐺 (𝑥, 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑥 ∈ 𝐽
(21)

holds, where

𝑤 (𝑥) =

𝑢 (𝑥)

𝑢 (𝜔) − 𝑏𝑢

[1]
(𝜔)

∫

𝜔

0

𝑔1 (𝑠) 𝜎1 (𝑠) 𝑑𝑠

+

𝑣 (𝑥)

𝑣 (0) − 𝑎𝑣

[1]
(0)

∫

𝜔

0

𝑔0 (𝑠) 𝜎0 (𝑠) 𝑑𝑠,

𝐺 (𝑥, 𝑠) = −

1

𝑤𝑠 (𝑢, 𝑣)
{

𝑢 (𝑠) 𝑣 (𝑥) , 0 ≤ 𝑠 ≤ 𝑥 ≤ 𝜔,

𝑢 (𝑥) 𝑣 (𝑠) , 0 ≤ 𝑥 ≤ 𝑠 ≤ 𝜔.

(22)

Proof. By Lemma 3, the general solutions of the nonhomoge-
neous problem (4) has the form

𝑦 (𝑥) = 𝑐1𝑢 (𝑥) + 𝑐2𝑣 (𝑥)

+ ∫

𝑥

0

𝑢 (𝑥) 𝑣 (𝑠) − 𝑢 (𝑠) 𝑣 (𝑥)

𝑊𝑠 (𝑢, 𝑣)
ℎ (𝑠) 𝑑𝑠,

(23)

where 𝑐1 and 𝑐2 are arbitrary constants. Now we try to choose
the constants 𝑐1 and 𝑐2 so that the function 𝑦(𝑥) satisfies the
boundary conditions of (11).

From (23), we have

𝑦

[1]
(𝑥) = 𝑐1𝑢

[1]
(𝑥) + 𝑐2𝑣

[1]
(𝑥)

+ ∫

𝑥

0

𝑢

[1]
(𝑥) 𝑣 (𝑠) − 𝑢 (𝑠) 𝑣

[1]
(𝑥)

𝑊𝑠 (𝑢, 𝑣)
ℎ (𝑠) 𝑑𝑠.

(24)

Consequently,

𝑦 (0) = 𝑐1𝑎 + 𝑐2𝑣 (0) ,

𝑦

[1]
(0) = 𝑐1 + 𝑐2𝑣

[1]
(0) .

(25)

Substituting these values of 𝑦(0) and 𝑦[1](0) into the first
boundary condition of (11), we find

𝑐2 =
1

𝑣 (0) − 𝑎𝑣

[1]
(0)

∫

𝜔

0

𝑔0 (𝑠) 𝜎0 (𝑠) 𝑑𝑠. (26)

Similarly from the second boundary condition of (11), we can
find

𝑐1 =
1

𝑢 (𝜔) − 𝑏𝑢

[1]
(𝜔)

∫

𝜔

0

𝑔1 (𝑠) 𝜎1 (𝑠) 𝑑𝑠

− ∫

𝜔

0

𝑣 (𝑠)

𝑊𝑠 (𝑢, 𝑣)
ℎ (𝑠) 𝑑𝑠.

(27)

Putting these values of 𝑐1 and 𝑐2 in (23), we get the formula
(21), (22).

Lemma 7. Let condition (H1) hold. Then for the Wronskian
of solution 𝑢(𝑥) and 𝑣(𝑥), the inequality𝑊𝑥(𝑢, 𝑣) < 0, 𝑥 ∈ 𝐽
holds.

Proof. Using the initial conditions (12), we can deduce from
(5) for 𝑢(𝑥) and 𝑣(𝑥) the following equations:

𝑢

[1]
(𝑥) = 1 + ∫

𝑥

0

𝑞 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑢 (𝑥) = 𝑎 + ∫

𝑥

0

1

𝑝 (𝑡)

𝑑𝑡

+ ∫

𝑥

0

[∫

𝑥

𝑠

𝑑𝑡

𝑝 (𝑡)

] 𝑞 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑣

[1]
(𝑥) = −1 − ∫

𝜔

𝑥

𝑞 (𝑠) 𝑣 (𝑠) 𝑑𝑠,

𝑣 (𝑥) = −𝑏 + ∫

𝜔

𝑥

1

𝑝 (𝑡)

𝑑𝑡

+ ∫

𝜔

𝑥

[∫

𝑠

𝑥

𝑑𝑡

𝑝 (𝑡)

] 𝑞 (𝑠) 𝑣 (𝑠) 𝑑𝑠.

(28)

From (28), by condition (H1) and Lemma 4, it follows that

𝑢 (𝑥) ≥ 𝑎 + ∫

𝑥

0

𝑑𝑡

𝑝 (𝑡)

> 0, 𝑢

[1]
(𝑥) ≥ 1 > 0,

𝑣 (𝑥) ≥ −𝑏 + ∫

𝜔

𝑥

𝑑𝑡

𝑝 (𝑡)

> 0, 𝑣

[1]
(𝑥) ≤ −1 < 0.

(29)

Now from (3), we get 𝑊𝑥(𝑢, 𝑣) < 0, 𝑥 ∈ 𝐽. The proof is
complete.

From (21), (22), and Lemma 7, the following lemma
follows.

Lemma 8. Under condition (H1) the Green’s function 𝐺(𝑥, 𝑠)
of the BVP (11) is positive. That is, 𝐺(𝑥, 𝑠) > 0 for 𝑥, 𝑠 ∈ 𝐽.

Let 𝐶(𝐽) denote the Banach of all continuous functions
𝑦 : 𝐼 → R equipped with the form ‖𝑦‖ = max{|𝑦(𝑥)|; 𝑥 ∈ 𝐽},
for any 𝑦 ∈ 𝐶(𝐽). Denote 𝑃 = {𝑦 ∈ 𝐶(𝐽); 𝑦(𝑥) ⩾ 0, 𝑦 ∈ 𝐽},
then 𝑃 is a positive cone in 𝐶(𝐽).

Let us set 𝐴 = max0⩽𝑥,𝑠⩽𝜔𝐺(𝑥, 𝑠), 𝐵 = min0⩽𝑥,𝑠⩽𝜔𝐺(𝑥, 𝑠),
and by Lemma 8, obviously, 𝐴 > 𝐵 > 0, 𝑥, 𝑠 ∈ 𝐽.
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Define a mappingΦ in Banach space 𝐶(𝐽) by

(Φ𝑦) (𝑥) = 𝑤 (𝑥) + 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) , 𝑥 ∈ 𝐽,

(30)

where

𝑤 (𝑥) =

𝑢 (𝑥)

𝑢 (𝜔) − 𝑏𝑢

[1]
(𝜔)

∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠

+

𝑣 (𝑥)

𝑣 (0) − 𝑎𝑣

[1]
(0)

∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(31)

Lemma 9. The fixed point of the mapping Φ is a solution of
(1).

Proof. Clearly, Φ𝑦 is continuous in 𝑥 for 𝑥 ∈ 𝐽. For 𝑥 ̸= 𝑥𝑘,

(Φ𝑦)


(𝑥) = 𝑤


(𝑥) + 𝜆∫

𝜔

0

𝜕𝐺

𝜕𝑥

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝜕𝐺 (𝑥, 𝑥𝑖)

𝜕𝑥

𝐼𝑖 (𝑦 (𝑥𝑖)) ,

(32)

where

𝑤


(𝑥) =

𝑢


(𝑥)

𝑢 (𝜔) − 𝑏𝑢

[1]
(𝜔)

∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠

+

𝑣


(𝑥)

𝑣 (0) − 𝑎𝑣

[1]
(0)

∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(33)

We have

(Φ𝑦)

[1]
(𝑥) = 𝑤

[1]
(𝑥) + 𝜆∫

𝜔

0

𝑝 (𝑥)

𝜕𝐺

𝜕𝑥

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝑝 (𝑥)

𝜕𝐺 (𝑥, 𝑥𝑖)

𝜕𝑥

𝐼𝑖 (𝑦 (𝑥𝑖)) ,

(34)

where

𝑤

[1]
(𝑥) =

𝑢

[1]
(𝑥)

𝑢 (𝜔) − 𝑏𝑢

[1]
(𝜔)

∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠

+

𝑣

[1]
(𝑥)

𝑣 (0) − 𝑎𝑣

[1]
(0)

∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(35)

We can easy get that

(Φ𝑦) (0) − 𝑎(Φ𝑦)

[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

(Φ𝑦) (𝜔) − 𝑏(Φ𝑦)

[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

Δ(Φ𝑦)

[1]
(𝑥𝑘) = 𝑝 (𝑥

+

𝑘 ) (Φ𝑦)

(𝑥

+

𝑘 )

− 𝑝 (𝑥

−

𝑘 ) (Φ𝑦)

(𝑥

−

𝑘 )

= 𝑝 (𝑥𝑘) [−
𝑢 (𝑥𝑘) 𝑣


(𝑥𝑘)

𝑊𝑥
𝑘
(𝑢, 𝑣)

+

𝑢


(𝑥𝑘) 𝑣 (𝑥𝑘)

𝑊𝑡
𝑘
(𝑢, 𝑣)

]

× 𝐼𝑘 (𝑦 (𝑥𝑘))

= −𝐼𝑘 (𝑦 (𝑥𝑘)) ,

(𝑝 (𝑥) (Φ𝑦)


(𝑥))


= [𝑝 (𝑥)𝑤


(𝑥)

+ 𝜆∫

𝜔

0

𝑝 (𝑥)

𝜕𝐺

𝜕𝑥

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝑝 (𝑥)

𝜕𝐺 (𝑥, 𝑥𝑖)

𝜕𝑥

𝐼𝑖 (𝑦 (𝑥𝑖))]



= 𝑞 (𝑥)𝑤 (𝑥) + 𝜆𝑞 (𝑥)

× ∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

− 𝜆𝑓 (𝑥, 𝑦 (𝑥)) + 𝑞 (𝑥)

×

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝑞 (𝑥) (Φ𝑦) (𝑥) − 𝜆𝑓 (𝑥, 𝑦 (𝑥)) ,

(36)

which implies that the fixed poind of Φ is a solution of (1).
The proof is complete.

Lemma 10. Let 𝑃0 := {𝑦 ∈ 𝑃;min𝑥∈𝐽𝑦(𝑥) ≥ ((1 −𝑀𝜔)𝐵/(1 −
𝑚𝜔)𝐴)‖𝑦‖}, then 𝑃0 is a cone.

Proof. (i) For for all 𝑦1, 𝑦2 ∈ 𝑃0 and for all 𝛼 ≥ 0, 𝛽 ≥ 0, we
have

min (𝛼𝑦1) ⩾ 𝛼 ⋅
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









𝑦1








,

min (𝛽𝑦2) ⩾ 𝛽 ⋅
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









𝑦2








.

(37)

Moreover

min (𝛼𝑦1 + 𝛽𝑦2) ⩾
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

(𝛼









𝑦1








+ 𝛽









𝑦2








)

⩾

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









𝛼𝑦1 + 𝛽𝑦2








.

(38)

Thus 𝛼𝑦1 + 𝛽𝑦2 ∈ 𝑃0.
(ii) If 𝑦 ∈ 𝑃0 and −𝑦 ∈ 𝑃0, we have

min
𝑥∈𝐽
(𝑦 (𝑥)) ⩾

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









𝑦









,

min
𝑥∈𝐽
(−𝑦 (𝑥)) ⩾

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









𝑦









.

(39)

It implies that 𝑦 = 0. Hence 𝑃0 is a cone.
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Defined a linear operator 𝐴 : 𝐶(𝐽) → 𝐶(𝐽) by

(𝐴𝑦) (𝑥) = ∫

𝜔

0

𝜙 (𝑥, 𝑠) 𝑦 (𝑠) 𝑑𝑠.
(40)

Then we have the following lemma.

Lemma 11. If (H2) is satisfied, then

(i) 𝐴 is a bounded linear operator, 𝐴(𝑃) ⊂ 𝑃;

(ii) (𝐼 − 𝐴) is invertible;

(iii) ‖(𝐼 − 𝐴)−1‖ ≤ 1/(1 −𝑀𝜔).

Proof. (i)

𝐴 (𝛼𝑦1 (𝑥) + 𝛽𝑦2 (𝑥)) = ∫

𝜔

0

𝜙 (𝑥, 𝑠) [𝛼𝑦1 (𝑠) + 𝛽𝑦2 (𝑠)] 𝑑𝑠

= 𝛼 (𝐴𝑦1) (𝑥) + 𝛽 (𝐴𝑦2) (𝑥) ,

(41)

for all 𝛼, 𝛽 ∈ R, 𝑦1, 𝑦2 ∈ 𝐶(𝐽).
Using 𝜙(𝑥, 𝑠) ≤ 𝑀, it is easy to see that |(𝐴𝑦)(𝑡)| ≤

𝑀𝜔‖𝑦‖.
Let 𝑦 ∈ 𝑃. Then 𝑦(𝑠) ≥ 0 for all 𝑠 ∈ 𝐽. Since 𝜙(𝑡, 𝑠) ≥ 𝑚 ≥

0, it follows that (𝐴𝑦)(𝑥) ≥ 0 for each 𝑥 ∈ 𝐽. So 𝐴(𝑃) ⊂ 𝑃.
(ii) We want to show that (𝐼 − 𝐴) is invertible, or

equivalently 1 is not an eigenvalue of 𝐴.
Since 𝑀 < 1/𝜔, it follows from condition (H2) that

‖𝐴𝑦‖ ≤ 𝑀𝜔‖𝑦‖ < ‖𝑦‖.
So

‖𝐴‖ = sup
𝑦 ̸= 0









𝐴𝑦

















𝑦









⩽ 𝑀𝜔 < 1. (42)

On the other hand, we suppose 1 is an eigenvalue of 𝐴, then
there exists a 𝑦 ∈ 𝐶(𝐽) such that 𝐴𝑦 = 𝑦. Moreover, we can
obtain that ‖𝐴𝑦‖/‖𝑦‖ = 1. So ‖𝐴‖ ⩾ 1. Thus this assumption
is false.

Conversely, 1 is not an eigenvalue of 𝐴. Equivalently, (𝐼 −
𝐴) is invertible.

(iii) We use the theory of Fredholm integral equations to
find the expression for (𝐼 − 𝐴)−1.

Obviously, for each 𝑥 ∈ 𝐽, 𝑦(𝑥) = (𝐼−𝐴)−1𝑧(𝑥) ⇔ 𝑦(𝑥) =
𝑧(𝑥) + (𝐴𝑦)(𝑥).

By (40), we can get

𝑦 (𝑥) = 𝑧 (𝑥) + ∫

𝜔

0

𝜙 (𝑥, 𝑠) 𝑦 (𝑠) 𝑑𝑠.
(43)

The condition𝑀 < 1/𝜔 implies that 1 is not an eigenvalue of
the kernel 𝜙(𝑥, 𝑠). So (43) has a unique continuous solution 𝑦
for every continuous function 𝑧.

By successive substitutions in (43), we obtain

𝑦 (𝑥) = 𝑧 (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) 𝑧 (𝑠) 𝑑𝑠,
(44)

where the resolvent kernel 𝑅(𝑥, 𝑠) is given by

𝑅 (𝑥, 𝑠) =

∞

∑

𝑗=1

𝜙𝑗 (𝑥, 𝑠) . (45)

Here 𝜙𝑗(𝑥, 𝑠) = ∫
𝜔

0
𝜙(𝑥, 𝜏)𝜙𝑗−1(𝜏, 𝑠)𝑑𝑠, 𝑗 = 2, . . . and 𝜙1(𝑥,

𝑠) = 𝜙(𝑥, 𝑠).
The series on the right in (45) is convergent because

|𝜙(𝑥, 𝑠)| ⩽ 𝑀 < 1/𝜔.
It can be easily verified that 𝑅(𝑥, 𝑠) ≤ 𝑀/(1 −𝑀𝜔).
So we can get

(𝐼 − 𝐴)

−1
𝑧 (𝑥) = 𝑧 (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) 𝑧 (𝑠) 𝑑𝑠.
(46)

Therefore

(𝐼 − 𝐴)

−1
𝑧 (𝑥) ≤ 𝑧 (𝑥) +

𝑀

1 −𝑀𝜔

∫

𝜔

0

𝑧 (𝑠) 𝑑𝑠

≤ ‖𝑧‖ (1 +

𝑀𝜔

1 −𝑀𝜔

) =

1

1 −𝑀𝜔

‖𝑧‖ .

(47)

So










(𝐼 − 𝐴)

−1
𝑧











‖𝑧‖

≤

1

1 −𝑀𝜔

.

(48)

Thus ‖(𝐼 − 𝐴)−1‖ ≤ 1/(1 − 𝑀𝜔). This completes the proof of
the lemma.

Remark 12. Since 𝜙(𝑥, 𝑠) ≥ 𝑚 for each (𝑥, 𝑠) ∈ 𝐽, it is easy to
prove that 𝑅(𝑥, 𝑠) ≥ 𝑚/(1 − 𝑚𝜔).

3. Main Results

Consider the following boundary value problem (BVP) with
impulses:

− (𝑦

[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = 𝜆𝑓 (𝑥, 𝑦 (𝑥)) ,

𝑥 ̸= 𝑥𝑖, 𝑥 ∈ 𝐽,

−Δ (𝑦

[1]
(𝑥𝑖)) = 𝐼𝑖 (𝑦 (𝑥𝑖)) , 𝑖 = 1, 2, . . . , 𝑚,

𝑦 (0) − 𝑎𝑦

[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

𝑦 (𝜔) − 𝑏𝑦

[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(49)

Denote a nonlinear operator 𝑇 : 𝑃𝐶(𝐽) → 𝑃𝐶(𝐽) by

(𝑇𝑦) (𝑥) = 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) .

(50)

It is easy to see that solutions of (49) are solutions of the
following equation:

𝑦 (𝑥) = 𝑇𝑦 (𝑥) + 𝐴𝑦 (𝑥) , 𝑥 ∈ 𝐽

−1
.

(51)
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According to Lemma 11, 𝑦 is a solution of (51) if and only if it
is a solution of

𝑦 (𝑥) = (𝐼 − 𝐴)

−1
𝑇𝑦 (𝑥) .

(52)

It follows from (46) that 𝑦 is a solution of (52) if and only if

𝑦 (𝑥) = (𝑇𝑦) (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) (𝑇𝑦) (𝑠) 𝑑𝑠.
(53)

So, the operatorΦ can be written as

(Φ𝑦) (𝑥) = (𝑇𝑦) (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) (𝑇𝑦) (𝑠) 𝑑𝑠.
(54)

It satisfies the conditions ofTheorem 1 with 𝐸 = 𝐶(𝐽) and the
cone 𝐶 = 𝑃0.

Let us list some marks and conditions for convenience.
The nonlinearity 𝑓 : 𝐽 × [0,∞) → [0,∞) is continuous

and satisfies the following.
(H3) There exist 𝐿1 > 0 and 𝛼(𝑥) ∈ 𝑃, 𝑟1 ∈ R with 𝑟1 ⩾

∑

𝑚

𝑖=0 𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫
𝜔

0
𝛼(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≤ 𝛼 (𝑥) [𝑦 (1 −𝑀𝜔) − 𝑟1] (55)

for all 𝑦 ∈ (0, 𝐿1], 𝑥 ∈ 𝐽.
(H4) There exist 𝐿2 > 𝐿1 and 𝛽(𝑥) ∈ 𝑃, 𝑝1 ∈ R with

𝑝1 ⩽ ∑
𝑚

𝑖=0 𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫
𝜔

0
𝛽(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≥ 𝛽 (𝑥) [𝑦 (1 − 𝑚𝜔) − 𝑝1] (56)

for all 𝑦 ∈ (𝐿2,∞], 𝑥 ∈ 𝐽.
Then, we can get the following theorem.

Theorem 13. Assume (H1), (H2), (H3), and (H4) are satisfied.
And

(1 − 𝑚𝜔)𝐴

2
∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 ⩽ (1 −𝑀𝜔)𝐵

2
∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠,
(57)

then, if 𝜆 satisfies

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵

2
∫

𝜔

0
𝛽 (𝑠) 𝑑𝑠

⩽ 𝜆 ⩽

1

𝐴∫

𝜔

0
𝛼 (𝑠) 𝑑𝑠

. (58)

The problem (49) has at least one positive solution.

Proof. First of all, we show that operatorΦ is defined by (54)
maps 𝑃0 into itself. Let 𝑦 ∈ 𝑃0.

Then (Φ𝑦)(𝑥) ≥ 0 for all that 𝑡 ∈ 𝐽−1, and

(Φ𝑦) (𝑥) ⩽

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(59)

Because from the formula (54), we have

(Φ𝑦) (𝑥) = (𝑇𝑦) (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) (𝑇𝑦) (𝑠) 𝑑𝑠

= 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+ 𝜆∫

𝜔

0

𝑅 (𝑥, 𝑠) ∫

𝜔

0

𝐺 (𝑥, 𝜏) 𝑓 (𝜏, 𝑦 (𝜏)) 𝑑𝜏 𝑑𝑠

+ ∫

𝜔

0

𝑅 (𝑥, 𝑠)

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) 𝑑𝑠

≤ 𝜆 (1 +

𝑀𝜔

1 −𝑀𝜔

)∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+

𝑀𝜔

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

≤

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(60)

Hence, inequality (59) is established.
This implies that









Φ𝑦









⩽

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) ,

(61)

or equivalently

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 ⩾

1 −𝑀𝜔

𝜆𝐴









Φ𝑦









−

1

𝜆

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) . (62)

On the other hand, it follows that

(Φ𝑦) (𝑥) ⩾

𝜆𝐵

1 − 𝑚𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(63)



Abstract and Applied Analysis 7

In fact, we have

(Φ𝑦) (𝑥) = 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+ 𝜆∫

𝜔

0

𝑅 (𝑥, 𝑠) ∫

𝜔

0

𝐺 (𝑥, 𝜏) 𝑓 (𝜏, 𝑦 (𝜏)) 𝑑𝜏 𝑑𝑠

+ ∫

𝜔

0

𝑅 (𝑥, 𝑠)

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) 𝑑𝑠

≥ 𝜆 (1 +

𝑚𝜔

1 − 𝑚𝜔

)∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+

𝑚𝜔

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

≥

𝜆𝐵

1 − 𝑚𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(64)

It follows from (62) that

(Φ𝑦) (𝑥) ≥

𝜆𝐵

1 − 𝑚𝜔

⋅ [

1 −𝑀𝜔

𝜆𝐴









Φ𝑦









−

1

𝜆

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))]

+

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

=

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









Φ𝑦









−

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

+

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

=

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









Φ𝑦









.

(65)

So, we get

(Φ𝑦) (𝑥) ⩾

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









Φ𝑦









. (66)

This show that Φ𝑦 ∈ 𝑃0.
It is easy to see thatΦ is the complete continuity.
We now proceed with the construction of the open sets

Ω1 andΩ2.

First, let 𝑦 ∈ 𝑃0 with ‖𝑦‖ = 𝐿1. Inequality (59) implies

(Φ𝑦) (𝑥) ≤

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

≤

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝛼 (𝑠) [𝑦 (𝑠) (1 −𝑀𝜔) − 𝑟1] 𝑑𝑠

+

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑦 (𝑠) 𝑑𝑠 −

𝜆𝐴

1 −𝑀𝜔

𝑟1

× ∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 +

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑦 (𝑠) 𝑑𝑠 +

𝐴

1 −𝑀𝜔

× [

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟1 ∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠] .

(67)

By condition (H3) and (58), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟1 ∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 ⩽ 0,

𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 ⩽ 1.

(68)

So

(Φ𝑦) (𝑥) ⩽ 𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠









𝑦









⩽









𝑦









. (69)

Consequently, ‖Φ𝑦‖ ⩽ ‖𝑦‖.
Let Ω1 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < 𝐿1}. Then, we have ‖Φ𝑦‖ ⩽

‖𝑦‖ for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω1.
Next, let ̃𝐿2 = max{2𝐿1, ((1 − 𝑚𝜔)𝐴/(1 −𝑀𝜔)𝐵)𝐿2} and

set Ω2 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < ̃𝐿2}.
For 𝑦 ∈ 𝑃0 with ‖𝑦‖ = ̃𝐿2, we have

min
𝑥∈𝐽
𝑦 (𝑥) ≥

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴









𝑦









=

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

̃

𝐿2

≥

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

⋅

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵

𝐿2 = 𝐿2.

(70)

It follows from (63) that

(Φ𝑦) (𝑥) ≥

𝜆𝐵

1 − 𝑚𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

≥

𝜆𝐵

1 − 𝑚𝜔

∫

𝜔

0

𝛽 (𝑠) [𝑦 (𝑠) (1 − 𝑚𝜔) − 𝑝1] 𝑑𝑠

+

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))
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= 𝜆𝐵∫

𝜔

0

𝛽 (𝑠) 𝑦 (𝑠) 𝑑𝑠 +

𝐵

1 − 𝑚𝜔

× (

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝1 ∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠) .

(71)

By condition (H4) and (58), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝1 ∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠 ⩾ 0,

𝜆𝐵 ⩾

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫

𝜔

0
𝛽 (𝑠) 𝑑𝑠

.

(72)

Since 𝑦 ∈ 𝑃0 we have 𝑦(𝑥) ⩾ ((1 −𝑀𝜔)𝐵/(1 − 𝑚𝜔)𝐴)‖𝑦‖ for
all 𝑥 ∈ 𝐽. It follows from the above inequality that

(Φ𝑦) (𝑥) ⩾

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫

𝜔

0
𝛽 (𝑠) 𝑑𝑠

∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠

⋅

(1 − 𝑀𝜔) 𝐵

(1 − 𝑚𝜔)𝐴









𝑦









=









𝑦









.

(73)

Hence ‖Φ𝑦‖ ⩾ ‖𝑦‖ for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω2.
It follows from (i) of Theorem 1 that Φ has a fixed point

in 𝑃0 ∩ (Ω2 \ Ω1), and this fixed point is a solution of (49).
This completes the proof.

Next, with 𝐿1 and 𝐿2 as above, we assume that 𝑓 satisfied
the following.

(H5) There exist 𝛼∗(𝑥) ∈ 𝑃, 𝑟∗1 ∈ R with 𝑟∗1 ⩽
∑

𝑚

𝑖=0 𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫
𝜔

0
𝛼

∗
(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≥ 𝛼

∗
(𝑥) [𝑦 (1 − 𝑚𝜔) − 𝑟

∗

1 ] (74)

for all 𝑦 ∈ (0, 𝐿1], 𝑥 ∈ 𝐽.
(H6) There exist 𝛽∗(𝑥) ∈ 𝑃, 𝑝∗1 ∈ R with 𝑝∗1 ⩾

∑

𝑚

𝑖=0 𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫
𝜔

0
𝛽

∗
(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≤ 𝛽

∗
(𝑥) [𝑦 (1 −𝑀𝜔) − 𝑝

∗

1 ] (75)

for all 𝑦 ∈ (𝐿2,∞], 𝑥 ∈ 𝐽.

Theorem 14. Assume (H1), (H2), (H5), and (H6) are satisfied.
And

(1 − 𝑚𝜔)𝐴

2
∫

𝜔

0

𝛽

∗
(𝑠) 𝑑𝑠 ⩽ (1 −𝑀𝜔)𝐵

2
∫

𝜔

0

𝛼

∗
(𝑠) 𝑑𝑠,

(76)

then, if 𝜆 satisfies

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵

2
∫

𝜔

0
𝛼

∗
(𝑠) 𝑑𝑠

⩽ 𝜆 ⩽

1

𝐴∫

𝜔

0
𝛽

∗
(𝑠) 𝑑𝑠

. (77)

The problem (49) has at least one positive solution.

Proof. LetΦ be a completely continuous operator defined by
(54). ThenΦmaps the cone 𝑃0 into itself.

First, let 𝑦 ∈ 𝑃0 with ‖𝑦‖ = 𝐿1. Inequality (63) implies

(Φ𝑦) (𝑥) ≥

𝜆𝐵

1 − 𝑚𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

≥

𝜆𝐵

1 − 𝑚𝜔

∫

𝜔

0

𝛼

∗
(𝑠) [𝑦 (𝑠) (1 − 𝑚𝜔) − 𝑟

∗

1 ] 𝑑𝑠

+

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐵∫

𝜔

0

𝛼

∗
(𝑠) 𝑦 (𝑠) 𝑑𝑠 +

𝐵

1 − 𝑚𝜔

× (

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟
∗

1 ∫

𝜔

0

𝛼

∗
(𝑠) 𝑑𝑠) .

(78)

By condition (H5) and (77), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟
∗

1 ∫

𝜔

0

𝛼

∗
(𝑠) 𝑑𝑠 ⩾ 0,

𝜆𝐵 ⩾

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫

𝜔

0
𝛼

∗
(𝑠) 𝑑𝑠

.

(79)

Hence

(Φ𝑦) (𝑥) ⩾

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫

𝜔

0
𝛼

∗
(𝑠) 𝑑𝑠

∫

𝜔

0

𝛼

∗
(𝑠) 𝑦 (𝑠) 𝑑𝑠.

(80)

Since 𝑦 ∈ 𝑃0, we have 𝑦(𝑥) ⩾ ((1 −𝑀𝜔)𝐵/(1 −𝑚𝜔)𝐴)‖𝑦‖ for
all 𝑥 ∈ 𝐽. It follows from the above inequality that

(Φ𝑦) (𝑥) ⩾

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫

𝜔

0
𝛼

∗
(𝑠) 𝑑𝑠

∫

𝜔

0

𝛼

∗
(𝑠) 𝑑𝑠

⋅

(1 − 𝑀𝜔) 𝐵

(1 − 𝑚𝜔)𝐴









𝑦









=









𝑦









.

(81)

Let Ω1 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < 𝐿1}. Then, we have ‖Φ𝑦‖ ⩾ ‖𝑦‖
for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω1.

Next, let ̃𝐿2 = max{2𝐿1, ((1 − 𝑚𝜔)𝐴/(1 −𝑀𝜔)𝐵)𝐿2} and
set Ω2 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < ̃𝐿2}.

Then for 𝑦 ∈ 𝑃0 with ‖𝑦‖ = ̃𝐿2 for all 𝑥 ∈ 𝐽, we have
min𝑥∈𝐽 𝑦(𝑥) ⩾ 𝐿2. Inequality (59) implies

(Φ𝑦) (𝑥) ≤

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))
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≤

𝜆𝐴

1 −𝑀𝜔

∫

𝜔

0

𝛽

∗
(𝑠) [𝑦 (𝑠) (1 −𝑀𝜔) − 𝑝

∗

1 ] 𝑑𝑠

+

𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐴∫

𝜔

0

𝛽

∗
(𝑠) 𝑦 (𝑠) 𝑑𝑠

+

𝐴

1 −𝑀𝜔

[

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝
∗

1 ∫

𝜔

0

𝛽

∗
(𝑠) 𝑑𝑠] .

(82)

By condition (H6) and (77), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝
∗

1 ∫

𝜔

0

𝛽

∗
(𝑠) 𝑑𝑠 ⩽ 0,

𝜆𝐴∫

𝜔

0

𝛽

∗
(𝑠) 𝑑𝑠 ⩽ 1.

(83)

So

(Φ𝑦) (𝑥) ⩽ 𝜆𝐴∫

𝜔

0

𝛽

∗
(𝑠) 𝑑𝑠









𝑦









⩽









𝑦









⩽ 1. (84)

Therefore ‖Φ𝑦‖ ⩽ ‖𝑦‖ with ‖𝑦‖ = ̃𝐿2.
Then, we have ‖Φ𝑦‖ ⩽ ‖𝑦‖ for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω2.
We see the case (ii) of Theorem 1 is met. It follows that Φ

has a fixed point in 𝑃0 ∩ (Ω2 \ Ω1), and this fixed point is a
solution of (49).

This completes the proof.
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