8,135 research outputs found

    A Mixed-ADC Receiver Architecture for Massive MIMO Systems

    Full text link
    Motivated by the demand for energy-efficient communication solutions in the next generation cellular network, a mixed-ADC receiver architecture for massive multiple input multiple output (MIMO) systems is proposed, which differs from previous works in that herein one-bit analog-to-digital converters (ADCs) partially replace the conventionally assumed high-resolution ADCs. The information-theoretic tool of generalized mutual information (GMI) is exploited to analyze the achievable data rates of the proposed system architecture and an array of analytical results of engineering interest are obtained. For deterministic single input multiple output (SIMO) channels, a closed-form expression of the GMI is derived, based on which the linear combiner is optimized. Then, the asymptotic behaviors of the GMI in both low and high SNR regimes are explored, and the analytical results suggest a plausible ADC assignment scheme. Finally, the analytical framework is applied to the multi-user access scenario, and the corresponding numerical results demonstrate that the mixed system architecture with a relatively small number of high-resolution ADCs is able to achieve a large fraction of the channel capacity without output quantization.Comment: 5 pages, 5 figures, to appear in IEEE Information Theory Workshop (ITW2015

    Mirror nuclei constraint in mass formula

    Full text link
    The macroscopic-microscopic mass formula is further improved by considering mirror nuclei constraint. The rms deviation with respect to 2149 measured nuclear masses is reduced to 0.441 MeV. The shell corrections, the deformations of nuclei, the neutron and proton drip lines, and the shell gaps are also investigated to test the model. The rms deviation of alpha-decay energies of 46 super-heavy nuclei is reduced to 0.263 MeV. The central position of the super-heavy island could lie around N=176~178 and Z=116~120 according to the shell corrections of nuclei.Comment: 15 pages, 7 figures, 3 tables; version to appear in Phys. Rev.

    IR-improved Soft-wall AdS/QCD Model for Baryons

    Get PDF
    We construct an infrared-improved soft-wall AdS/QCD model for baryons by considering the infrared-modified 5D conformal mass and Yukawa coupling of the bulk baryon field. The model is also built by taking into account the parity-doublet pattern for the excited baryons. When taking the bulk vacuum structure of the meson field to be the one obtained consistently in the infrared-improved soft-wall AdS/QCD model for mesons, we arrive at a consistent prediction for the baryon mass spectrum in even and odd parity. The prediction shows a remarkable agreement with the experimental data. We also perform a calculation for the ρ(a1)\rho(a_1) meson-nucleon coupling constant and obtain a consistent result in comparison with the experimental data and many other models.Comment: 12 pages, 4 tables, 1 figure, to be published in PL
    corecore