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We construct an infrared-improved soft-wall AdS/QCD model for baryons by considering the infrared-
modified 5D conformal mass and Yukawa coupling of the bulk baryon field. The model is also built by 
taking into account the parity-doublet pattern for the excited baryons. When taking the bulk vacuum 
structure of the meson field to be the one obtained consistently in the infrared-improved soft-wall 
AdS/QCD model for mesons, we arrive at a consistent prediction for the baryon mass spectrum in even 
and odd parity. The prediction shows a remarkable agreement with the experimental data. We also 
perform a calculation for the ρ(a1) meson–nucleon coupling constant and obtain consistent result in 
comparison with the experimental data and other effective models.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Quantum chromodynamics (QCD) is the fundamental theory de-
scribing the strong interactions among quarks and gluons. QCD 
has been successfully applied to study the perturbative effects of 
strong interactions at high energies due to the property of asymp-
totic freedom [1,2]. However, it is very hard to be used directly 
in the nonperturbative low-energy regime. Numerical methods or 
other effective theories have been constructed to give a low-energy 
description of the strong interaction, such as lattice QCD or chiral 
effective field theory [3,4]. The discovery of Anti-de Sitter/Con-
formal field theory (AdS/CFT) [5–7], which establishes the duality 
between the weak coupled supergravity in AdS5 and the strong 
coupled N = 4 super Yang–Mills gauge theory in the boundary, 
provides new idea for solving the challenge problems of strong 
interaction at low energies. Based on AdS/CFT, a holographic de-
scription of QCD has been established. A number of researches 
have been focused on the low-energy phenomenology of hadrons. 
Many different models have been constructed, and they are usu-
ally called AdS/QCD or holographic QCD. Generally speaking, these 
models can be divided into top-down and bottom-up approaches. 
The former starts from certain brane configurations in string the-
ory to reproduce some basic features of QCD [8–10]. The latter is 

* Corresponding author.
E-mail addresses: fangzhen@itp.ac.cn (Z. Fang), lidn@itp.ac.cn (D. Li), 

ylwu@itp.ac.cn (Y.-L. Wu).
http://dx.doi.org/10.1016/j.physletb.2016.01.045
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
constructed on the basis of low-energy properties of QCD, such as 
chiral symmetry breaking and quark confinement [11–13].

In the bottom-up approach, the hard-wall and soft-wall mod-
els are successful ones in describing hadron physics. The hard-wall 
model [11] used a sharp cut-off in the extra dimension to realize 
chiral symmetry breaking, while the linear Regge behavior of me-
son spectrum is lacking in this model. In the soft-wall model [12], 
an IR-suppressed dilaton term was added to reproduce the Regge 
behavior of mass spectrum, but the chiral symmetry breaking phe-
nomenon cannot be consistently realized. Many efforts [14–18]
have been made to build more realistic and predictive models, so 
that the mass spectrum of mesons can be matched up better in 
comparison with the experimental data. Some other characteris-
tic quantities, such as interacting couplings or form factors, can 
also be produced well. In [18], we proposed a modified soft-wall 
AdS/QCD model which leads to a more consistent description for 
the mass spectrum of mesons.

Application of holographic QCD approach to baryons has also 
attracted much attention [19–29]. A number of quantities includ-
ing the baryon spectrum and electromagnetic form factors of nu-
cleons as well as the meson–nucleon couplings have been calcu-
lated in both hard-wall and soft-wall models. In [20], a hard-wall 
model for low-lying spin- 1

2 baryons which includes the effects 
of chiral symmetry breaking was proposed to explain the parity-
doublet pattern of excited baryons. Other models have also been 
constructed to tackle the problems of baryons in the soft-wall 
AdS/QCD framework [30,31]. However, it can be shown that there 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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is a massless mode due to the lack of chiral symmetry breaking in 
these models.

In this paper, we shall pay attention to the infrared (IR) behav-
ior of AdS/QCD model and build an IR-improved soft-wall AdS/QCD 
model for baryons with two light flavors. The model is constructed 
by considering the IR-modified conformal mass and Yukawa cou-
pling of the bulk baryon field with the bulk meson field. To be 
consistent with the soft-wall AdS/QCD model for mesons, the vac-
uum structure for the bulk meson field is taken to be the same 
as the one obtained in the IR-improved soft-wall AdS/QCD model 
for mesons, which has been shown to provide a consistent pre-
diction for the mass spectra of mesons [18]. In Sec. 2, the model 
is built by taking into account the parity-doublet pattern of ex-
cited baryons as discussed in the hard-wall baryon model [20]. As 
a consequence, we arrive at a more realistic IR-improved soft-wall 
AdS/QCD model for baryons. Such a model can provide a consistent 
prediction for the baryon mass spectrum which fits the experimen-
tal data very well. In Sec. 3, we calculate the ρ(a1) meson–nucleon 
coupling constant and compare our result with the ones obtained 
from the empirical estimation and other models. The conclusions 
and remarks are presented in Sec. 4.

2. Baryon mass spectrum in IR-improved soft-wall AdS/QCD 
model

2.1. Action of IR-improved soft-wall AdS/QCD model

Let us first construct the soft-wall AdS/QCD model for baryons. 
We use the standard 5D AdS space-time as the background:

ds2 = e2A(z)
(
ημνdxμdxν − dz2

)
(1)

with A(z) = −ln z and ημν = diag{+1, −1, −1, −1}.
To consider the parity-doublet pattern of excited baryons, a pair 

of 5D spinors N1 and N2 corresponding to the spin- 1
2 chiral baryon 

operators OL and OR in 4D should be introduced, as discussed 
in Ref. [20]. The chiral baryon operators OL and OR transform as 
(2, 1) and (1, 2) under SU(2)L × SU(2)R respectively. The bulk ac-
tion of the Dirac fields N j ( j = 1, 2) is constructed as follows

SN j =
∫

d5x
√

g

[
i

2
N̄ je

M
A �A∇M N j − i

2
(∇†

M N̄ j)eM
A �A N j

− m̂N(z)δ j N̄ j N j
]

, (2)

where �A = (γ μ, −iγ 5) are the 5D Dirac matrices which satisfy {
�A,�B

} = 2ηAB with ηAB = diag{+1, −1, −1, −1, −1}, eM
A is the 

vielbein satisfying gMN = e A
MeB

NηAB , and ∇M is the Lorentz and 
gauge covariant derivative

∇M = ∂M − i

2
ωAB

M �AB − i(Aa
L)Mta (3)

with ωAB
M the spin connection given by ωAB

M = ∂z A(z)(δA
MδB

z −
δA

z δB
M) and �AB = i

4

[
�A,�B

]
.

Unlike the usual soft-wall AdS/QCD model for mesons in which 
there is an explicit dilaton term in the bulk action, such an expo-
nential term of dilaton for the spin- 1

2 fermion case can be removed 
from the action by making a rescaling definition for the fermionic 
baryon fields [31]. m̂N (z) is the IR-modified 5D conformal mass of 
the bulk spinors:

m̂N(z) = m5 + m̃N(z) (4)

with m5 the 5D conformal mass. The magnitude of m5 is fixed by 
the general AdS/CFT relation with the scaling dimension 
 of the 
boundary operator [32,33]:
m2
5 =

(

 − d

2

)2

, 
 = 9

2
. (5)

Here we take m5 = 5
2 and introduce δ j = ±1 to yield the right 

chiral zero modes when matching N j with the 4D chiral operators 
OL and OR [20]:

δ j =
{

1, j = 1

−1, j = 2
. (6)

The IR-modified 5D mass term m̃N (z) is considered to have the 
following simple form

m̃N(z) = μ2
g z2

1 + μ2
g z2

λN , (7)

which is required to be vanishing in the ultraviolet (UV) region 
z → 0 and get a non-zero fixed value in the IR region z → ∞ due 
to the QCD confining effect. Here μg is the energy scale charac-
terizing the low energy QCD [18]. Note that such an IR behavior is 
different from a simple quadratic term appearing in [28,31].

Let us now construct the IR-modified Yukawa coupling term be-
tween the bulk spinors (N1, N2) and the bulk scalar field X . The 
5D spinors N1 and N2 are dual to the spin- 1

2 chiral baryon oper-
ators OL and OR in 4D respectively [20,21], and the 5D action of 
them has the following form

SY =
∫

d5x
√

g
[
−yN(z)(N̄1 X N2 + N̄2 X†N1)

]
, (8)

so that the resulting effective 4D Lagrangian possesses the chiral 
symmetry SU(N f )L × SU(N f )R with N f the flavor number. Note 
that when the bulk vacuum expectation value (bVEV) of X breaks 
the chiral symmetry, it remains keeping a vector-like symmetry, 
i.e., SU(N f )L × SU(N f )R → SU(N f )V . The IR-modified Yukawa cou-
pling yN (z) is assumed to have the following properties at UV and 
IR regions:

yN(z)|z→0 → 0 ; yN(z)〈X(z)〉|z→∞ → z2 . (9)

It will be shown that the SY term will lift the would-be massless 
ground state of baryons to a massive state and split the degener-
ate massive excitations into parity doublets, so that it can explain 
the experimental sign of the parity doubling pattern of excited 
baryons [34]. Note that the Yukawa coupling yN(z) is considered 
to be an IR-modified one which is different from the case in [20], 
and its form will be specified later as it is relevant to the bVEV of 
the bulk meson field.

The general action for the bulk baryon field is given by

SN = SN1 + SN2 + SY . (10)

We shall investigate the phenomena of resonance baryons based 
on the above action.

2.2. Bulk vacuum expectation value of scalar meson field

The 5D action of the meson sector in the original soft-wall 
model [12] is given as

S =
∫

d5x
√

ge−�(z) Tr

[
|D X |2 − m2

X |X |2 − 1

4g2
5

(F 2
L + F 2

R)

]

(11)

with D M X = ∂M X − i AM
L X + i X AM

R , AM
L,R = AM a

L,R ta and Tr[tatb] =
δab/2. The mass of the bulk scalar field X can be determined as 
m2 = −3 by the standard AdS/CFT dictionary [7], and the gauge 
X
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coupling g5 is fixed to be g2
5 = 12π2/Nc with Nc the color num-

ber [11]. The complex bulk field X is in general decomposed into 
the scalar and pseudoscalar mesons, and the chiral gauge fields AL

and AR are identified to the vector and axial-vector mesons.
The bVEV of the scalar meson field X in the two-flavor case has 

the form as follows

χ(z) ≡ 〈X〉 = 1

2
v(z)

(
1 0
0 1

)
, (12)

which satisfies the equation of motion derived from the ac-
tion (11):

v ′′(z) + (3A′(z) − �′(z)) v ′(z) − m2
X e2A(z) v(z) = 0 . (13)

As expected from the AdS/CFT dictionary [7], the bVEV v(z) has 
the following behavior in the UV region z → 0:

v(z → 0) = mq ζ z + σ z3

ζ
, (14)

where mq and σ are the current quark mass and quark conden-
sate, respectively, and ζ = √

3/(2π) is the normalization parame-
ter [35].

In the original soft-wall model [12], v(z) can be calculated from 
Eq. (13), but the solution will reach to a constant in the IR limit 
z → ∞. Such an asymptotic behavior leads to the chiral symme-
try restoration which is not supported in QCD [36]. In the recent 
studies [15,16,18], the IR asymptotic behavior of v(z) is assumed 
to have a reliable form which can realize the chiral symmetry 
breaking. The simplest forms for the dilaton profile, the metric or 
the conformal mass have been modified in the IR region to make 
Eq. (13) consistent.

As shown in Ref. [18], a consistent IR-improved soft-wall 
AdS/QCD model for mesons with the quartic interaction term of 
bulk scalar field can be written as

S =
∫

d5x
√

ge−�(z) Tr
[
|D X |2 − m2

X (z)|X |2 − λX (z)|X |4

− 1

4g2
5

(F 2
L + F 2

R)

]
, (15)

where the conformal mass mX (z) and the quartic coupling λX (z)
are considered to have the proper IR-improved forms. The bVEV 
v(z) has the following IR behavior

v(z → ∞) = vqz (16)

with vq the constant parameter which characterizes the en-
ergy scale of dynamically generated spontaneous chiral symmetry 
breaking caused by the quark condensate [4]. A simply parameter-
ized form of v(z) is taken as [18]

v(z) = Az + Bz3

1 + C z2
(17)

with

A = mqζ, B = σ

ζ
+ mqζ C, C = μ2

c /ζ, vq = B/C, (18)

where the constant parameter μc characterizes the QCD confine-
ment scale.

Then we specify the Yukawa coupling yN (z) in action (8) as

yN(z) = λA μg z
(

1 − λB μ2
g z2e−μ2

g z2
)

, (19)

which is required to realize a consistent mass spectrum of reso-
nance baryons compared with experimental data.
2.3. Equation of motion and solutions for parity-doublet baryons

Let us decompose the bulk baryon fields N j ( j = 1, 2) into the 
chiral form

N j = N jL + N jR , (20)

where i�5N jL = N jL and i�5N jR = −N jR . Then a KK decomposi-
tion for N jL,R is performed to yield the following form

N jL,R(x, z) =
∑

n

∫
d4 p

(2π)4
e−ipx f (n)

jL,R(z)ψ(n)
L,R(p) , (21)

where ψ
(n)
L,R(p) is the 4D spinors which satisfy γ 5ψ

(n)
L (p) =

ψ
(n)
L (p), γ 5ψ

(n)
R (p) = −ψ

(n)
R (p) and /pψ

(n)
L,R(p) = |p|ψ(n)

R,L(p).
From the action given in Eq. (10), we can derive the equation of 

motion in terms of f jL,R ( j = 1, 2) as (note that we shall neglect 
the superscript of f (n)

jL,R and ψ(n)
L,R below for convenience)

(
∂z − e A(z) m̂N(z) + d

2 A′(z) −yN e A(z) χ(z)
−yN e A(z) χ(z) ∂z + e A(z) m̂N(z) + d

2 A′(z)

)(
f1L

f2L

)

= −|p|
(

f1R

f2R

)
(

∂z + e A(z) m̂N(z) + d
2 A′(z) yN e A(z) χ(z)

yN e A(z) χ(z) ∂z − e A(z) m̂N(z) + d
2 A′(z))

)(
f1R

f2R

)

= |p|
(

f1L

f2L

)
. (22)

Here we need to clarify the even and odd parity of baryons, 
which is hidden in the above equation of motion. The parity trans-
formations of 4D spinors ψL,R are defined as (P is a unitary rep-
resentation of parity transformation)

P−1ψL,R(x)P = γ 0ψR,L(x̄) (23)

with x̄ = (t, −�x). The parity transformation for the 5D spinors are 
defined as

P−1N1L(x, z)P = η1γ
0N2R(x̄, z),

P−1N1R(x, z)P = η2γ
0N2L(x̄, z),

P−1N2L(x, z)P = η2γ
0N1R(x̄, z),

P−1N2R(x, z)P = η1γ
0N1L(x̄, z). (24)

It is easy to prove that the action (10) is parity invariant if η1, η2
satisfy the relations [30,37]:

η∗
1η1 = η∗

2η2 = 1, η∗
1η2 = η∗

2η1 = −1 . (25)

For convenience, we restrict η1 and η2 to be real. We will show 
that η1 = 1, η2 = −1 correspond to the even parity case, while 
η1 = −1, η2 = 1 correspond to the odd parity case. Using Eqs. (23)
and (24), we can easily find the relations between the bulk profiles 
f jL,R ( j = 1, 2) corresponding to the even and odd parity, respec-
tively:

f1L(z) = f2R(z), f1R(z) = − f2L(z) even,

f1L(z) = − f2R(z), f1R(z) = f2L(z) odd. (26)

Now we introduce f +
j (z) and f −

j (z) with the forms as follows

f +
1 (z) = f1L(z) + f2R(z), f +

2 (z) = f1R(z) − f2L(z),

f −(z) = f1L(z) − f2R(z), f −(z) = f1R(z) + f2L(z). (27)
1 2
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Table 1
The values of input parameters. mq , σ , μg , μc are taken from [18].

mq (MeV) σ 1/3 (MeV) μg (MeV) μc (MeV) λA λB λN

3.52 290 473 375 3.93 16.58 2.55

Then Eq. (22) can be decoupled as( −∂z + e A(z)m̂N(z) − d
2 A′(z) −yN e A(z)χ(z)

yN e A(z)χ(z) ∂z + e A(z)m̂N(z) + d
2 A′(z)

)(
f +
1

f +
2

)

= |p|
(

f +
2

f +
1

)
, (28)

( −∂z + e A(z)m̂N(z) − d
2 A′(z) yN e A(z)χ(z)

−yN e A(z)χ(z) ∂z + e A(z)m̂N(z) + d
2 A′(z)

)(
f −
1

f −
2

)

= |p|
(

f −
2

f −
1

)
. (29)

From Eqs. (26) and (27), we can see that for the even parity case 
only f +

j ( j = 1, 2) survive and for the odd parity case only f −
j

( j = 1, 2) survive. f +
j and f −

j are just the holographic analogues 
of the even and odd parity baryon wave functions, respectively.

2.4. Numerical results

As is noted above, in this paper we only consider the two-flavor 
case with lightest quarks u and d, and ignore the isospin symme-
try breaking. The model involves seven parameters, i.e., mq , σ , μg , 
μc , λN , λA and λB , and four of them appear in the IR-improved 
soft-wall AdS/QCD model for mesons [18], i.e., quark mass mq , 
quark condensate σ , energy scales μc and μg . Here we just use 
the values of the four parameters obtained from [18] as it has 
been shown to provide a consistent prediction for the mass spec-
tra of scalar, pseudoscalar, vector and axial-vector mesons. Thus 
there are only three parameters λN , λA and λB in the IR-improved 
soft-wall AdS/QCD model for baryons. We fit these three param-
eters by requiring the masses of the first three low-lying baryons 
with even parity to match the experimental value. Especially, the 
mass of nucleons is fixed to be 939 MeV. After fixing all the pa-
rameters, the masses of odd-parity baryons and the ones of the 
high excited states of even-parity baryons could be considered as 
our model prediction. The values of these parameters are shown in 
Table 1.

The baryon masses can be calculated by solving Eqs. (28)
and (29) numerically with the boundary conditions f +(z → 0) =
1
Table 2
Mass spectra of even-parity nucleons. The superscript ∗ represents the existence 
confidence level. The experimental data are from [38].

N (even) 0 1 2 3 4 5

Exp. (MeV) 939**** 1440**** 1710*** 1880** 2100* 2300**
Theory (MeV) 939 1435 1698 1915 2105 2276

Table 3
Mass spectra of odd-parity nucleons. The superscript ∗ represents the existence con-
fidence level. The experimental data are from [38].

N (odd) 0 1 2 3 4

Exp. (MeV) 1535**** 1650**** 1895** – –
Theory (MeV) 1473 1717 1927 2113 2281

f +
2 (z → 0) = 0 and f −

1 (z → 0) = f −
2 (z → 0) = 0. The results are 

presented in Tables 2 and 3, and the baryon wave functions are 
plotted in Fig. 1. One can see a good agreement between the the-
oretical calculations and the experimental values, and the results 
are much better than the hard-wall calculations in [20].

3. (Axial-)vector meson–nucleon couplings

It is useful to apply the IR-improved AdS/QCD model for 
baryons described above to calculate the ρ(a1) meson–nucleon 
couplings, which can be compared with results in other mod-
els and empirical estimation from related experimental measure-
ments. The vector meson–nucleon coupling constant has been 
calculated in the top-down models [39–41] and in the hard-wall 
models [42,43]. There are also some other calculations outside 
the holographic framework [44,45] and experimental estimations 
[46–49].

As was shown in [43,50], the vector–nucleon couplings may 
receive contributions in two ways. The first one comes from the 
gauge interactions which is incorporated in the covariant deriva-
tive of kinetic term of the action (2),

Sgauge =
∫

d5x
√

g

[
i

2
N̄1eM

A �A(−i AL
M)N1

− i

2
((−i AL

M)N1)
†�0eM

A �A N1

+ i
N̄2eM

A �A(−i AR
M)N2 − i

((−i AR
M)N2)

†�0eM
A �A N2

]

2 2
Fig. 1. Baryon wave functions for the first three even-parity states (left) and odd-parity states (right). The solid line represents ground states. The dashed line represents first 
excited states. The dotted line represents second excited states.
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⊃
∫

d4x

∞∫
0

dz

z4

[
N̄1γ

μVμN1 + N̄2γ
μVμN2

+ N̄1γ
μ AμN1 − N̄2γ

μ AμN2
]

=
∫

d4x

∞∫
0

dz

z4

[
V 0(z)(| f (0)

1L (z)|2 + | f (0)
2L (z)|2)ψ̄γ μVμ(x)ψ

− A0(z)(| f (0)
1L (z)|2 − | f (0)

2L (z)|2)ψ̄γ 5γ μ Aμ(x)ψ
]
. (30)

The second one originates from the Pauli term which was intro-
duced in [50] for the evaluation of the anomalous magnetic dipole 
moment μano and the CP-violating electric dipole moment de ,

SPauli = i κ

∫
d5x

√
geM

A eN
B

[
N̄1�

AB(F L)MN N1

− N̄2�
AB(F R)MN N2

]
⊃ i κ

∫
d5x

√
gz2 [

N̄1L�
μz(F V )μz N1L

+ N̄1R�μz(F V )μz N1R − (1 ↔ 2)
]

+ i κ

∫
d5x

√
gz2 [

N̄1L�
μz(F A)μz N1L

+ N̄1R�μz(F A)μz N1R + (1 ↔ 2)
]

= −2κ

∫
d4x

∞∫
0

dz

z3

[
V ′

0(z)(| f (0)
1L (z)|2

− | f (0)
2L (z)|2)ψ̄γ μVμ(x)ψ

− A′
0(z)(| f (0)

1L (z)|2 + | f (0)
2L (z)|2)ψ̄γ 5γ μ Aμ(x)ψ

]
. (31)

We can easily read the ρ(a1) meson–nucleon coupling con-
stants from the above two formulas:

gρN N = g(0)
ρN N + g(1)

ρN N

=
∞∫

0

dz

z4
V 0(z) (| f (0)

1L (z)|2 + | f (0)
2L (z)|2)

− 2κ

∞∫
0

dz

z3
V ′

0(z) (| f (0)
1L (z)|2 − | f (0)

2L (z)|2) , (32)

and

ga1 N N = g(0)
a1 N N + g(1)

a1 N N

=
∞∫

0

dz

z4
A0(z) (| f (0)

1L (z)|2 − | f (0)
2L (z)|2)

− 2κ

∞∫
0

dz

z3
A′

0(z) (| f (0)
1L (z)|2 + | f (0)

2L (z)|2) . (33)

Note that there are some differences of the above formulas 
from that in [43] though we follow the same procedure with the 
same action terms. The normalized wave function (A0)V 0 of (a1)ρ
meson has been determined in the IR-improved AdS/QCD model 
Table 4
The values of ρ(a1) meson–nucleon coupling constants calculated in our model and 
other ones or estimated from experiments.

Model/Experiment gρN N ga1 N N

Our model 2.48 0.14
Experiment [46–48] 4.2 ∼ 6.5 –
Experiment [49] 2.52 ± 0.06 –
Sum rule [44] −2.5 ± 1.1 –
Chiral quark [45] 2.8 –
Hard-wall [43] 0.2 ∼ 0.5 1.5 ∼ 4.5
Hard-wall [42] −3.42 (−8.6) –
Soft-wall [51] 5.33 (6.78) –

for mesons [18], and κ is fixed by the anomalous magnetic dipole 
moments of nucleons [50] as follows

μano = −e 2κ

∞∫
0

dz

z3
f (0)
1L (z) f (0)

2L (z) � 1.8e

2mN
(34)

with the nucleon mass mN � 0.939 GeV. Then we obtain κ � 0.19
from Eq. (34).

Taking the parameters obtained in the IR-improved AdS/QCD 
model for mesons [18] and the IR-improved AdS/QCD model for 
baryons in this paper, we are able to calculate the ρ(a1) meson–
nucleon coupling constant. The results are shown in Table 4 in 
comparison with other models or empirical values. [46–49] are 
empirical estimations from different experimental data, and [44]
is QCD sum rule calculation. The result of [45] was obtained in 
the chiral quark model. [42,43] are hard-wall models with differ-
ent action terms. [51] studied ρ meson–nucleon coupling constant 
in a soft-wall AdS/QCD model which is different from ours. In 
our calculation, the ρ and a1 meson–nucleon couplings include 
two parts both from the gauge interaction terms and from the 
Pauli action terms. The numerical results from different terms are: 
g(0)
ρN N � 2.71, g(1)

ρN N � −0.23, g(0)
a1 N N � 0.29, g(1)

a1 N N � −0.15. It can 
be seen that the gauge interactions give the main contribution of 
the couplings, while the Pauli term contributes to a small negative 
part. From Table 4 we see that our result of gρN N is consistent 
with the ones from experiments and other effective models, yet 
the baryon spectrum in our model is reproduced much better than 
that in the hard-wall model [20], as has been shown in Tables 2
and 3.

4. Conclusions and remarks

We have built an IR-improved soft-wall AdS/QCD model for 
baryons. Two bulk spin- 1

2 fermion fields and a bulk scalar field 
have been introduced as the basic block of this model, follow-
ing [20]. The Yukawa coupling term in the action is necessary 
for inducing the chiral symmetry breaking, which is crucial for 
the mass of lowest-lying baryons, and splitting the baryons into 
a parity-doublet pattern of resonance states. The IR-modified 5D 
conformal mass m̃N (z) plays the role of an effective confining po-
tential for attaining the reliable mass spectrum of baryons. By 
adopting the parameterization of the bVEV of bulk scalar field in 
the IR-improved soft-wall AdS/QCD model for mesons [18], we 
have arrived at a consistent mass spectrum of baryons, which 
agrees well with the experimental data. It has been shown that 
the combined behavior of the bVEV of bulk scalar field and the 
IR-modified Yukawa coupling yN (z) is critical for yielding the con-
sistent mass spectra of the highly excited baryon states.

The (axial-)vector meson–nucleon coupling constants gρN N

and ga1 N N have been calculated within the IR-improved AdS/QCD 
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model for baryons. We have considered both the gauge interaction 
term contained in the covariant derivative of action (2) and the 
terms related to the anomalous magnetic dipole moment of nu-
cleons [43,50]. The numerical result of gρN N � 2.48 is consistent 
with the experimental data and other models of QCD. The coupling 
ga1 N N has no experimental data, and our calculated value is much 
smaller than the one obtained in the hard-wall model [43] though 
the same action terms have been taken. Note that the formulas of 
gρN N and ga1 N N are different from those in [43].

In this paper we have carried out the calculations for the 
mass spectrum of baryons in the two-flavor case and discussed 
the (axial-)vector meson–nucleon coupling constants. In gen-
eral, many other properties relevant to baryons can be studied 
within the framework of the IR-improved AdS/QCD model for 
baryons, such as the nucleon electromagnetic and gravitational 
form factors, and the pion–nucleon coupling, etc. In particu-
lar, by considering the explicit chiral symmetry breaking due to 
quark masses, the three-flavor case which incorporates the baryon 
octet may be an interesting extension to be studied in the fu-
ture.

Acknowledgements

This work was supported in part by the National Science Foun-
dation of China (NSFC) under Grant Nos. 11475237, 11121064, 
10821504 and also by the CAS Center for Excellence in Particle 
Physics (CCEPP).

References

[1] D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.
[2] H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.
[3] Y. Nambu, Phys. Rev. Lett. 4 (1960) 380.
[4] Y.B. Dai, Y.L. Wu, Eur. Phys. J. C 39 (2004) S1, arXiv:hep-ph/0304075.
[5] J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, arXiv:hep-th/9711200.
[6] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428 (1998) 105, arXiv:

hep-th/9802109.
[7] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253, arXiv:hep-th/9802150.
[8] M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, J. High Energy Phys. 0405 

(2004) 041, arXiv:hep-th/0311270.
[9] T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113 (2005) 843, arXiv:hep-th/0412141.

[10] T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114 (2005) 1083, arXiv:hep-th/
0507073.

[11] J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95 (2005) 261602, 
arXiv:hep-ph/0501128.

[12] A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74 (2006) 015005, 
arXiv:hep-ph/0602229.

[13] S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 96 (2006) 201601, arXiv:hep-ph/
0602252.

[14] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78 
(2008) 055009, arXiv:0807.1054 [hep-ph].

[15] T. Gherghetta, J.I. Kapusta, T.M. Kelley, Phys. Rev. D 79 (2009) 076003, arXiv:
0902.1998 [hep-ph].

[16] Y.Q. Sui, Y.L. Wu, Z.F. Xie, Y.B. Yang, Phys. Rev. D 81 (2010) 014024, arXiv:
0909.3887 [hep-ph].
[17] D. Li, M. Huang, Q.S. Yan, Eur. Phys. J. C 73 (2013) 2615, arXiv:1206.2824
[hep-th].

[18] L.X. Cui, Z. Fang, Y.L. Wu, arXiv:1310.6487 [hep-ph].
[19] G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 94 (2005) 201601, arXiv:hep-

th/0501022.
[20] D.K. Hong, T. Inami, H.U. Yee, Phys. Lett. B 646 (2007) 165, arXiv:hep-ph/

0609270.
[21] Y. Kim, C.H. Lee, H.U. Yee, Phys. Rev. D 77 (2008) 085030, arXiv:0707.2637 

[hep-ph].
[22] H. Forkel, M. Beyer, T. Frederico, J. High Energy Phys. 0707 (2007) 077, 

arXiv:0705.1857 [hep-ph].
[23] A. Vega, I. Schmidt, Phys. Rev. D 79 (2009) 055003, arXiv:0811.4638 [hep-ph].
[24] A. Pomarol, A. Wulzer, Nucl. Phys. B 809 (2009) 347, arXiv:0807.0316 [hep-ph].
[25] Z. Abidin, C.E. Carlson, Phys. Rev. D 79 (2009) 115003, arXiv:0903.4818 [hep-

ph].
[26] A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 83 (2011) 036001, 

arXiv:1010.2815 [hep-ph].
[27] P. Zhang, J. High Energy Phys. 1005 (2010) 039, arXiv:1003.0558 [hep-ph].
[28] G.F. de Teramond, S.J. Brodsky, arXiv:1203.4025 [hep-ph].
[29] Z. Li, B.Q. Ma, Phys. Rev. D 89 (1) (2014) 015014, arXiv:1312.3451 [hep-ph].
[30] T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 86 (2012) 036007, 

arXiv:1204.6612 [hep-ph].
[31] T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 85 (2012) 076003, 

arXiv:1108.0346 [hep-ph].
[32] M. Henningson, K. Sfetsos, Phys. Lett. B 431 (1998) 63, arXiv:hep-th/9803251;

W. Mueck, K.S. Viswanathan, Phys. Rev. D 58 (1998) 106006, arXiv:hep-th/
9805145;
M. Henneaux, in: Mathematical Methods in Modern Theoretical Physics, Tbilisi, 
1998, pp. 161–170, arXiv:hep-th/9902137.

[33] R. Contino, A. Pomarol, J. High Energy Phys. 0411 (2004) 058, arXiv:hep-th/
0406257.

[34] R.L. Jaffe, D. Pirjol, A. Scardicchio, Phys. Rep. 435 (2006) 157, arXiv:hep-ph/
0602010.

[35] A. Cherman, T.D. Cohen, E.S. Werbos, Phys. Rev. C 79 (2009) 045203, arXiv:
0804.1096 [hep-ph].

[36] M. Shifman, A. Vainshtein, Phys. Rev. D 77 (2008) 034002, arXiv:0710.0863 
[hep-ph].

[37] B.R. He, M. Harada, Phys. Rev. D 88 (9) (2013) 095007, arXiv:1304.7866
[hep-ph].

[38] K.A. Olive, et al., Particle Data Group Collaboration, Chin. Phys. C 38 (2014) 
090001.

[39] S. Hong, S. Yoon, M.J. Strassler, arXiv:hep-ph/0501197.
[40] D.K. Hong, M. Rho, H.U. Yee, P. Yi, J. High Energy Phys. 0709 (2007) 063, arXiv:

0705.2632 [hep-th].
[41] K. Hashimoto, T. Sakai, S. Sugimoto, Prog. Theor. Phys. 120 (2008) 1093, arXiv:

0806.3122 [hep-th].
[42] H.C. Ahn, D.K. Hong, C. Park, S. Siwach, Phys. Rev. D 80 (2009) 054001, arXiv:

0904.3731 [hep-ph].
[43] N. Maru, M. Tachibana, Eur. Phys. J. C 63 (2009) 123, arXiv:0904.3816 [hep-ph].
[44] T.M. Aliev, A. Ozpineci, M. Savci, V.S. Zamiralov, Phys. Rev. D 80 (2009) 016010, 

arXiv:0905.4664 [hep-ph].
[45] D.O. Riska, G.E. Brown, Nucl. Phys. A 679 (2001) 577, arXiv:nucl-th/0005049.
[46] G. Hohler, E. Pietarinen, Nucl. Phys. B 95 (1975) 210.
[47] R. Machleidt, Phys. Rev. C 63 (2001) 024001, arXiv:nucl-th/0006014.
[48] F. Gross, A. Stadler, Phys. Lett. B 657 (2007) 176, arXiv:0704.1229 [nucl-th].
[49] V.G.J. Stoks, T.A. Rijken, Nucl. Phys. A 613 (1997) 311, arXiv:nucl-th/9611002.
[50] D.K. Hong, H.C. Kim, S. Siwach, H.U. Yee, J. High Energy Phys. 0711 (2007) 036, 

arXiv:0709.0314 [hep-ph].
[51] N. Huseynova, S. Mamedov, Int. J. Theor. Phys. 54 (10) (2015) 3799, arXiv:

1408.5496 [hep-th].

http://refhub.elsevier.com/S0370-2693(16)00062-9/bib47726F73733A313937336964s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib506F6C69747A65723A313937336678s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4E616D62753A313936307864s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4457s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4775627365723A313939386263s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4775627365723A313939386263s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib57697474656E3A31393938716As1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4B7275637A656E736B693A323030337571s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4B7275637A656E736B693A323030337571s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib53616B61693A32303034636Es1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib53616B61693A323030357974s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib53616B61693A323030357974s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib45726C6963683A323030357168s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib45726C6963683A323030357168s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4B617263683A323030367076s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4B617263683A323030367076s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib425431s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib425431s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib736F667477616C6C31s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib736F667477616C6C31s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib476865726768657474613A323030396163s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib476865726768657474613A323030396163s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib5375693A323030397865s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib5375693A323030397865s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4C693A323031326179s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4C693A323031326179s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4375693A32303133787661s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib6465546572616D6F6E643A323030357375s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib6465546572616D6F6E643A323030357375s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030367461s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030367461s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4B696D3A323030377869s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4B696D3A323030377869s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib466F726B656C3A32303037636Ds1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib466F726B656C3A32303037636Ds1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib566567613A323030387465s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib506F6D61726F6C3A323030386161s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib41626964696E3A323030396872s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib41626964696E3A323030396872s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib566567613A323031306E73s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib566567613A323031306E73s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib5A68616E673A32303130746Bs1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib6465546572616D6F6E643A323031327274s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4C693A323031336C6661s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib477574736368653A323031326270s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib477574736368653A323031326270s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib477574736368653A323031317662s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib477574736368653A323031317662s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48656E6E696E67736F6E3A313939386364s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48656E6E696E67736F6E3A313939386364s2
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48656E6E696E67736F6E3A313939386364s2
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48656E6E696E67736F6E3A313939386364s3
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48656E6E696E67736F6E3A313939386364s3
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib436F6E74696E6F3A323030347679s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib436F6E74696E6F3A323030347679s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4A616666653A323030366A79s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4A616666653A323030366A79s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib436865726D616E3A323030386568s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib436865726D616E3A323030386568s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib536869666D616E3A32303037786Es1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib536869666D616E3A32303037786Es1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48653A32303133677461s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48653A32303133677461s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4167617368653A323031346B6461s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4167617368653A323031346B6461s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030356E70s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030376179s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030376179s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48617368696D6F746F3A323030387A77s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48617368696D6F746F3A323030387A77s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib41686E3A323030397078s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib41686E3A323030397078s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4D6172753A323030397578s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib416C6965763A323030396569s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib416C6965763A323030396569s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib5269736B613A32303030676463686972616C717561726B6D6F64656Cs1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F686C65723A313937346874s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib4D6163686C656964743A323030306765s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib47726F73733A323030376265s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib53746F6B733A31393936796As1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030377466s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib486F6E673A323030377466s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48757365796E6F76613A32303134706361s1
http://refhub.elsevier.com/S0370-2693(16)00062-9/bib48757365796E6F76613A32303134706361s1

	IR-improved soft-wall AdS/QCD model for baryons
	1 Introduction
	2 Baryon mass spectrum in IR-improved soft-wall AdS/QCD model
	2.1 Action of IR-improved soft-wall AdS/QCD model
	2.2 Bulk vacuum expectation value of scalar meson ﬁeld
	2.3 Equation of motion and solutions for parity-doublet baryons
	2.4 Numerical results

	3 (Axial-)vector meson-nucleon couplings
	4 Conclusions and remarks
	Acknowledgements
	References


