5,127 research outputs found

    On Nash Dynamics of Matching Market Equilibria

    Full text link
    In this paper, we study the Nash dynamics of strategic interplays of n buyers in a matching market setup by a seller, the market maker. Taking the standard market equilibrium approach, upon receiving submitted bid vectors from the buyers, the market maker will decide on a price vector to clear the market in such a way that each buyer is allocated an item for which he desires the most (a.k.a., a market equilibrium solution). While such equilibrium outcomes are not unique, the market maker chooses one (maxeq) that optimizes its own objective --- revenue maximization. The buyers in turn change bids to their best interests in order to obtain higher utilities in the next round's market equilibrium solution. This is an (n+1)-person game where buyers place strategic bids to gain the most from the market maker's equilibrium mechanism. The incentives of buyers in deciding their bids and the market maker's choice of using the maxeq mechanism create a wave of Nash dynamics involved in the market. We characterize Nash equilibria in the dynamics in terms of the relationship between maxeq and mineq (i.e., minimum revenue equilibrium), and develop convergence results for Nash dynamics from the maxeq policy to a mineq solution, resulting an outcome equivalent to the truthful VCG mechanism. Our results imply revenue equivalence between maxeq and mineq, and address the question that why short-term revenue maximization is a poor long run strategy, in a deterministic and dynamic setting

    Numerical Study of the Aerodynamics of DLR-F6 Wing-Body in Unbounded Flow Field and in Ground Effect

    Get PDF
    The main focus of this thesis is on the simulation of flow past a three-dimensional wing-body configuration (DLR-F6) in ground effect; a complex 3D wing-body configuration in ground effect has never been analyzed in the aerodynamics literature to date. For the purpose of validation of the simulation approach, computations are performed for the DLR-F6 wing-body in unbounded flow and are compared with the experimental data. The commercial CFD solver ANSYS FLUENT is employed for computations. Compressible Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with Spalart-Allmaras (SA) and - Shear Stress Transport (SST) turbulence models are solved. The validated code is employed to calculate the flow field in ground effect; the effects of flight heights above the ground and angle of attack on the aerodynamic properties and flow field are analyzed

    On Revenue Maximization with Sharp Multi-Unit Demands

    Full text link
    We consider markets consisting of a set of indivisible items, and buyers that have {\em sharp} multi-unit demand. This means that each buyer ii wants a specific number did_i of items; a bundle of size less than did_i has no value, while a bundle of size greater than did_i is worth no more than the most valued did_i items (valuations being additive). We consider the objective of setting prices and allocations in order to maximize the total revenue of the market maker. The pricing problem with sharp multi-unit demand buyers has a number of properties that the unit-demand model does not possess, and is an important question in algorithmic pricing. We consider the problem of computing a revenue maximizing solution for two solution concepts: competitive equilibrium and envy-free pricing. For unrestricted valuations, these problems are NP-complete; we focus on a realistic special case of "correlated values" where each buyer ii has a valuation v_i\qual_j for item jj, where viv_i and \qual_j are positive quantities associated with buyer ii and item jj respectively. We present a polynomial time algorithm to solve the revenue-maximizing competitive equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded by a constant, a revenue maximizing solution can be found efficiently; the general demand case is shown to be NP-hard.Comment: page2
    • …
    corecore