2,689 research outputs found

    Heavy subgraphs, stability and hamiltonicity

    Full text link
    Let GG be a graph. Adopting the terminology of Broersma et al. and \v{C}ada, respectively, we say that GG is 2-heavy if every induced claw (K1,3K_{1,3}) of GG contains two end-vertices each one has degree at least ∣V(G)∣/2|V(G)|/2; and GG is o-heavy if every induced claw of GG contains two end-vertices with degree sum at least ∣V(G)∣|V(G)| in GG. In this paper, we introduce a new concept, and say that GG is \emph{SS-c-heavy} if for a given graph SS and every induced subgraph G′G' of GG isomorphic to SS and every maximal clique CC of G′G', every non-trivial component of G′−CG'-C contains a vertex of degree at least ∣V(G)∣/2|V(G)|/2 in GG. In terms of this concept, our original motivation that a theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and NN-c-heavy graph is hamiltonian, where NN is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs SS such that every 2-connected o-heavy and SS-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu's theorem. Furthermore, our main result improves or extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones Mathematicae Graph Theor

    On path-quasar Ramsey numbers

    Get PDF
    Let G1G_1 and G2G_2 be two given graphs. The Ramsey number R(G1,G2)R(G_1,G_2) is the least integer rr such that for every graph GG on rr vertices, either GG contains a G1G_1 or G‾\overline{G} contains a G2G_2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m)R(P_n,K_{1,m}), where PnP_n is a path on nn vertices and K1,mK_{1,m} is a star on m+1m+1 vertices. In this note, we first give an explicit formula for the path-star Ramsey numbers. Secondly, we study the Ramsey numbers R(Pn,K1∨Fm)R(P_n,K_1\vee F_m), where FmF_m is a linear forest on mm vertices. We determine the exact values of R(Pn,K1∨Fm)R(P_n,K_1\vee F_m) for the cases m≤nm\leq n and m≥2nm\geq 2n, and for the case that FmF_m has no odd component. Moreover, we give a lower bound and an upper bound for the case n+1≤m≤2n−1n+1\leq m\leq 2n-1 and FmF_m has at least one odd component.Comment: 7 page

    Quantum Decoherence with Holography

    Get PDF
    Quantum decoherence is the loss of a system's purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon formalism, we compute the influence functional holographically by relating it to the generating function of Schwinger-Keldysh propagators and thereby obtain the dynamics of the system's density matrix. We present two exactly solvable examples: (1) a straight string in a BTZ black hole and (2) a scalar probe in AdS5_5. We prepare an initial state that mimics Schr\"odinger's cat and identify different stages of its decoherence process using the time-scaling behaviors of R\'enyi entropy. We also relate decoherence to local quantum quenches, and by comparing the time evolution behaviors of the Wigner function and R\'enyi entropy we demonstrate that the relaxation of local quantum excitations leads to the collapse of its wave-function.Comment: 55 pages, 13 figures; v2 47 pages & 13 figs, minor revision to match published versio
    • …
    corecore