407 research outputs found

    Effects of relative orientation of the molecules on electron transport in molecular devices

    Full text link
    Effects of relative orientation of the molecules on electron transport in molecular devices are studied by non-equilibrium Green's function method based on density functional theory. In particular, two molecular devices, with the planer Au7_{7} and Ag3_{3} clusters sandwiched between the Al(100) electrodes are studied. In each device, two typical configurations with the clusters parallel and vertical to the electrodes are considered. It is found that the relative orientation affects the transport properties of these two devices completely differently. In the Al(100)-Au7_7-Al(100) device, the conductance and the current of the parallel configuration are much larger than those in the vertical configuration, while in the Al(100)-Ag3_{3}-Al(100) device, an opposite conclusion is obtained

    Variations of Particle Size Distribution, Black Carbon, and Brown Carbon during a Severe Winter Pollution Event over Xi'an, China

    Get PDF
    Real-time particulate matter (PM) size distributions, 4-hour time resolution, PM2.5, carbonaceous materials, and their optical properties were measured during a severe pollution event in Xi'an, China High PM2.5 /PM10 ratios were observed on both pollution (0.83) and non-pollution (0.73) days, emphasizing the abundance of fine particles during sampling days. The particle number (PN) first peaked with a wide size range (30-100 nm) before morning rush hours (approximately 01:00-05:00) on pollution and non-pollution days, demonstrating that PN was governed by the accumulation of freshly emitted diesel particles and characterized by distinct aerosol condensation growth. By contrast, the second peak time and size range differed between pollution and non-pollution days because of different formation mechanisms The light-absorbing coefficients of both black carbon (BC, b(abs-880nm,BC)) and brown carbon (BrC, b(abs-370nm, BrC)) were high on pollution days and decreased to approximately half of those values on non-pollution days, indicating that the degree of light absorption is reduced by rain. The diurnal variation in b(abs-880nm, BC) pollution peaked with traffic on January 1 and 2. By contrast, it remained in relatively stable and high ranges (120-160 Mm(-1)) in the second period (January 3-5) without traffic peaks, illustrating that the dominant sources changed even during the same pollution period. High values of both b(abs-370nm, BrC) and b(abs-880nm,) (BC )coincided in the afternoon and evening due to emissions from primary sources, and abundant aqueous secondary organic carbon, respectively. A highly variable mass absorption coefficient of BrC also indicated the variety of fuel combustion sources of primary BrC in Xi'an

    Balancing selection on an MYB transcription factor maintains the twig trichome color variation in Melastoma normale

    Get PDF
    Background The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. Results The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. Conclusions This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow

    Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

    Full text link
    Universal quantum error-correction requires the ability of manipulating entanglement of five or more particles. Although entanglement of three or four particles has been experimentally demonstrated and used to obtain the extreme contradiction between quantum mechanics and local realism, the realization of five-particle entanglement remains an experimental challenge. Meanwhile, a crucial experimental challenge in multi-party quantum communication and computation is the so-called open-destination teleportation. During open-destination teleportation, an unknown quantum state of a single particle is first teleported onto a N-particle coherent superposition to perform distributed quantum information processing. At a later stage this teleported state can be readout at any of the N particles for further applications by performing a projection measurement on the remaining N-1 particles. Here, we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation. In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single photon state to achieve the experimental goals. The methods developed in our experiment would have various applications e.g. in quantum secret sharing and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200

    Rapid increase of scrub typhus incidence in Guangzhou, southern China, 2006-2014

    Get PDF
    Background: In the last decade, scrub typhus (ST) has been emerging or re-emerging in some areas of Asia, including Guangzhou, one of the most affected endemic areas of ST in China. Methods: Based on the data on all cases reported in Guangzhou from 2006 to 2014, we characterized the epidemiological features, and identified environmental determinants for the spatial distribution of ST using a panel negative binomial model. Results: A total of 4821 scrub typhus cases were reported in Guangzhou during 2006-2014. The annual incidence increased noticeably and the increase was relatively high and rapid in rural townships and among elderly females. The majority of cases (86.8%) occurred during May-October, and farmers constituted the majority of the cases, accounting for 33.9% in urban and 61.6% in rural areas. The number of housekeeper patients had a rapid increment in both rural and urban areas during the study period. Atmospheric pressure and relative humidity with lags of 1 or 2 months, distributions of broadleaved forest and rural township were identified as determinants for the spatiotemporal distribution of scrub typhus. Conclusion: Our results indicate that surveillance and public education need to be focused on the elderly farmers in rural areas covered with broadleaf forest in southern China

    A Rapid Subtractive Immunization Method to Prepare Discriminatory Monoclonal Antibodies for Food E. coli O157:H7 Contamination

    Get PDF
    To detect food E. coli O157:H7 contamination rapidly and accurately, it is essential to prepare high specific monoclonal antibodies (mAbs) against the pathogen. Cyclophosphamide (Cy)-mediated subtractive immunization strategy was performed in mice to generate mAbs that react with E. coli O157:H7, but not with other affiliated bacteria. Specificity of 19 mAbs was evaluated by ELISA and/or dot-immunogold filtration assay (DIGFA). Immunogloubin typing, affinity and binding antigens of 5 selected mAbs were also analysed. MAbs 1D8, 4A7, 5A2 were found to have high reactivity with E. coli O157:H7 and no cross-reactivity with 80 other strains of bacteria including Salmonella sp., Shigella sp., Proteus sp., Yersinia enterocolitica, Staphylococcus aureus, Klebsiella pneumoniae, Citrobacter freundii and other non-E. coli O157:H7 enteric bacteria. Their ascetic titers reached 1∶106 with E. coli O157:H7 and affinity constants ranged from 1.57×1010 to 2.79×1010 L/mol. The antigens recognized by them were different localized proteins. Furthermore, immune-colloidal gold probe coated with mAb 5A2 could specifically distinguish minced beef contaminated by E. coli O157:H7 from 84 other bacterial contaminations. The Cy-mediated subtractive immunization procedure coupled with hybridoma technology is a rapid and efficient approach to prepare discriminatory mAbs for detection of E. coli O157:H7 contamination in food

    Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noninvasive and tissue-specific technologies of gene transfection would be valuable in clinical gene therapy. This present study was designed to determine whether it could enhance gene transfection <it>in vivo </it>by the combination of ultrasound-targeted microbubble destruction (UTMD) with polyethylenimine (PEI) in tumor xenografts, and illuminate the effects of gene silencing and apoptosis induction with short hairpin RNA (shRNA) interference therapy targeting human survivin by this novel technique.</p> <p>Methods</p> <p>Two different expression vectors (pCMV-LUC and pSIREN) were incubated with PEI to prepare cationic complexes (PEI/DNA) and confirmed by the gel retardation assay. Human cervical carcinoma (Hela) tumors were planted subcutaneously in both flanks of nude mice. Tumor-bearing mice were administered by tail vein with PBS, plasmid, plasmid and SonoVue microbubble, PEI/DNA and SonoVue microbubble. One tumor was exposed to ultrasound irradiation, while the other served as control. The feasibility of targeted delivery and tissue specificity facilitated by UTMD and PEI were investigated. Moreover, immunohistochemistry analyses about gene silencing and apoptosis induction were detected.</p> <p>Results</p> <p>Electrophoresis experiment revealed that PEI could condense DNA efficiently. The application of UTMD significantly increases the tissue transfection. Both expression vectors showed that gene expressions were present in all sections of tumors that received ultrasound exposure but not in control tumors. More importantly, the increases in transgene expression were related to UTMD with the presence of PEI significantly. Silencing of the survivin gene could induce apoptosis effectively by downregulating survivin and bcl-2 expression, also cause up-regulation of bax and caspase-3 expression.</p> <p>Conclusions</p> <p>This noninvasive, novel combination of UTMD with PEI could enhance targeted gene delivery and gene expression in tumor xenografts at intravenous administration effectively without causing any apparently adverse effect, and might be a promising candidate for gene therapy. Silencing of survivin gene expression with shRNA could be facilitated by this non-viral technique, and lead to significant cell apoptosis.</p

    Experimental models for the autoimmune and inflammatory blistering disease, Bullous pemphigoid

    Get PDF
    Bullous pemphigoid (BP) is a subepidermal skin blistering disease characterized immunohistologically by dermal-epidermal junction (DEJ) separation, an inflammatory cell infiltrate in the upper dermis, and autoantibodies targeted toward the hemidesmosomal proteins BP230 and BP180. Development of an IgG passive transfer mouse model of BP that reproduces these key features of human BP has demonstrated that subepidermal blistering is initiated by anti-BP180 antibodies and mediated by complement activation, mast cell degranulation, neutrophil infiltration, and proteinase secretion. This model is not compatible with study of human pathogenic antibodies, as the human and murine antigenic epitopes are not cross-reactive. The development of two novel humanized mouse models for the first time has enabled study of disease mechanisms caused by BP autoantibodies, and presents an ideal in vivo system to test novel therapeutic strategies for disease management
    corecore