2,073 research outputs found

    Revisit assignments of the new excited Ωc\Omega_c states with QCD sum rules

    Full text link
    In this article, we distinguish the contributions of the positive parity and negative parity Ωc\Omega_c states, study the masses and pole residues of the 1S, 1P, 2S and 2P Ωc\Omega_c states with the spin J=12J=\frac{1}{2} and 32\frac{3}{2} using the QCD sum rules in a consistent way, and revisit the assignments of the new narrow excited Ωc0\Omega_c^0 states. The predictions support assigning the Ωc(3000)\Omega_c(3000) to be the 1P Ωc\Omega_c state with JP=12J^P={\frac{1}{2}}^-, assigning the Ωc(3090)\Omega_c(3090) to be the 1P Ωc\Omega_c state with JP=32J^P={\frac{3}{2}}^- or the 2S Ωc\Omega_c state with JP=12+J^P={\frac{1}{2}}^+, and assigning Ωc(3119)\Omega_c(3119) to be the 2S Ωc\Omega_c state with JP=32+J^P={\frac{3}{2}}^+.Comment: 19 pages, 22 figures. arXiv admin note: text overlap with arXiv:1705.0774

    Possible Deuteron-like Molecular States Composed of Heavy Baryons

    Full text link
    We perform a systematic study of the possible loosely bound states composed of two charmed baryons or a charmed baryon and an anti-charmed baryon within the framework of the one boson exchange (OBE) model. We consider not only the π\pi exchange but also the η\eta, ρ\rho, ω\omega, ϕ\phi and σ\sigma exchanges. The SDS-D mixing effects for the spin-triplets are also taken into account. With the derived effective potentials, we calculate the binding energies and root-mean-square (RMS) radii for the systems ΛcΛc(Λˉc)\Lambda_c\Lambda_c(\bar{\Lambda}_c), ΞcΞc(Ξˉc)\Xi_c\Xi_c(\bar{\Xi}_c), ΣcΣc(Σˉc)\Sigma_c\Sigma_c(\bar{\Sigma}_c), ΞcΞc(Ξˉc)\Xi_c^\prime\Xi_c^\prime(\bar{\Xi}_c^\prime) and ΩcΩc(Ωˉc)\Omega_c\Omega_c(\bar{\Omega}_c). Our numerical results indicate that: (1) the H-dibaryon-like state ΛcΛc\Lambda_c\Lambda_c does not exist; (2) there may exist four loosely bound deuteron-like states ΞcΞc\Xi_c\Xi_c and ΞcΞc\Xi_c^\prime\Xi_c^\prime with small binding energies and large RMS radii.Comment: 17 pages, 32 figure

    Sustainable development of China’s commercial vehicles

    Get PDF

    Gate Tunable Dissipation and "Superconductor-Insulator" Transition in Carbon Nanotube Josephson Transistors

    Full text link
    Dissipation is ubiquitous in quantum systems, and its interplay with fluctuations is critical to maintaining quantum coherence. We experimentally investigate the dissipation dynamics in single-walled carbon nanotubes coupled to superconductors. The voltage-current characteristics display gate-tunable hysteresis, with sizes that perfectly correlate with the normal state resistance RN, indicating the junction undergoes a periodic modulation between underdamped and overdamped regimes. Surprisingly, when a device's Fermi-level is tuned through a local conductance minimum, we observe a gate-controlled transition from superconducting-like to insulating-like states, with a "critical" R_N value of about 8-20 kohm.Comment: Figures revised to improve clarity. Accepted for publication by Physical Review Letter

    Anti-resorptive effects of cementocytes during orthodontic tooth movement

    Get PDF
    Purpose: To investigate the mechanism involved in the anti-resorptive effect of cementocytes during orthodontic tooth movement in mice and human specimens.Methods: The morphology, molecular structure and biological expression of cellular cementum in mice and human samples were examined using hematoxylin and eosin staining, immuno-histochemical staining, scanning electron microscopy, and Raman spectroscopy. The expressions of osteoprotegerin (OPG), receptor activator of nuclear κB ligand (RANKL) and sclerostin (SOST) encoding genes in cementocytes and alveolar bone osteocytes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR).Results: Results demonstrated that cementocyte lacunae were larger and more irregular in shape than the regular ellipsoid osteocyte lacunae. The ratio of phosphate to amino acid was significantly lower in cellular cementum than that in alveolar bone and dentin. In mice, OPG/RANKL ratio was significantly higher in cementocytes (4.8 ± 0.37) than in alveolar bone osteocytes (0.17 ± 0.42) in natural state. In humans, OPG/RANKL ratio was 1.41 ± 0.07 in cementocytes and 0.71 ± 0.04 in alveolar bone osteocytes under natural conditions, and 37.69 ± 0.15 in cementocytes and 1.95 ± 0.83 in alveolar bone osteocytes applying fluid flow shear stress. Moreover, SOST was extremely low expressed under force application in cementocytes.Conclusion: Under fluid flow sheer stress, cementocytes stimulate the differentiation of osteoblasts and inhibit the activation of osteoclasts, showing greater potential for bone protection than alveolar bone osteocytes. Cementocytes might play an important role in preventing root resorption in the process of orthodontic tooth movement.Keywords: Cementocytes, Bone protection, Microfluidic chip, Orthodontic tooth movemen

    Spin susceptibility of Anderson impurities in arbitrary conduction bands

    Full text link
    Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening. Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp\chi_{\textrm{imp}} to susceptibility, defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands. The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp\chi_{\textrm{imp}}, even when the bands are not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data for the local susceptibility χloc\chi_{\textrm{loc}} and to compare them with χimp\chi_{\textrm{imp}} obtained by the traditional NRG. Our results indicate that those exotic behaviors observed in χimp\chi_{\textrm{imp}} are unphysical. Instead, the low-energy excitations of the impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We also demonstrate that unlike the traditional NRG yielding χloc\chi_{\textrm{loc}} less accurate than χimp\chi_{\textrm{imp}}, the FDM method allows a high-precision dynamical calculation of χloc\chi_{\textrm{loc}} at much reduced computational cost, with an accuracy at least one order higher than χimp\chi_{\textrm{imp}}. Moreover, artifacts in the FDM algorithm to χimp\chi_{\textrm{imp}}, and origins of the spurious non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of Wilson's definition to such cases.Comment: the published versio
    corecore