44 research outputs found

    Comparison of experimental and theoretical electron-impact-ionization triple-differential cross sections for ethane

    Get PDF
    We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O, NH3, CH4). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p-type ā€œpeanutā€ shape. In this work, we examine ethane (C2H6) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies

    Low Energy (e,2e) Studies from CHā‚„: Results from Symmetric Coplanar Experiments and Molecular Three-Body Distorted Wave Theory

    Get PDF
    Low energy experimental and theoretical triply differential cross sections are presented for electron impact ionization of methane (CH4) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). The HOMO is a predominantly p-type orbital which is labeled 1t2 and the NHOMO is predominantly s-type labeled 2a 1. Coplanar symmetric (symmetric both in final state electron energies and observation angles) are presented for final state electron energies ranging from 2.5 to 20 eV. The theoretical M3DW (molecular three-body distorted wave) results are in surprisingly good agreement with experiment for the HOMO state and less satisfactory agreement for the NHOMO state. The molecular NHOMO results are also compared with the ionization of the 2s shell of neon which is the isoelectronic atom

    Low Energy (e,2e) Coincidence Studies of NHā‚ƒ: Results from Experiment and Theory

    Get PDF
    Experimental and theoretical triple differential cross sections (TDCS) from ammonia are presented in the low energy regime with outgoing electron energies from 20 eV down to 1.5 eV. Ionization measurements from the 3a1, 1e1, and 2a1 molecular orbitals were taken in a coplanar geometry. Data from the 3a1 and 1e1 orbitals were also obtained in a perpendicular plane geometry. The data are compared to predictions from the distorted wave Born approximation and molecular-three-body distorted wave models. The cross sections for the 3a1 and 1e1 orbitals that have p-like character were found to be similar, and were different to that of the 2a1 orbital which has s-like character. These observations are not reproduced by theory, which predicts the structure of the TDCS for all orbitals should be similar. Comparisons are also made to results from experiment and theory for the iso-electronic targets neon and methane

    (e,2e) Ionization Studies of Nā‚‚ at Low to Intermediate Energies from a Coplanar Geometry to the Perpendicular Plane

    Get PDF
    Synopsis. The progress of experimental and theoretical measurements for (e,2e) ionization cross sections from Nitrogen molecules is presented. Results are given for energies from ~10 eV above the ionization potential (IP) through to ~100 eV above the IP for the 3Ļƒg, 1Ļ€u and 2Ļƒg states

    Low Energy (e,2e) Measurements of Chā“ and Neon in the Perpendicular Plane

    Get PDF
    Low energy experimental and theoretical triple differential cross sections for the highest occupied molecular orbital of methane (1t2) and for the 2p atomic orbital of neon are presented and compared. These targets are iso-electronic, each containing 10 electrons and the chosen orbital within each target has p-electron character. Observation of the differences and similarities of the cross sections for these two species hence gives insight into the different scattering mechanisms occurring for atomic and molecular targets. The experiments used perpendicular, symmetric kinematics with outgoing electron energies between 1.5 eV and 30 eV for CH4 and 2.5 eV and 25 eV for neon. The experimental data from these targets are compared with theoretical predictions using a distorted-wave Born approximation. Reasonably good agreement is seen between the experiment and theory for neon while mixed results are observed for CH4. This is most likely due to approximations of the target orientation made within the model

    Electron-Impact Ionization of Hā‚‚O at Low Projectile Energy: Internormalized Triple-Differential Cross Sections in Three-Dimensional Kinematics

    Get PDF
    We report a combined experimental and theoretical study of the electron-impact ionization of water (H2O) at the relatively low incident energy of E0=81eV in which either the 1b1 or 3a1 orbitals are ionized leading to the stable H2O cation. The experimental data were measured by using a reaction microscope, which can cover nearly the entire 4Ļ€ solid angle for the secondary electron emission over a range of ejection energies. We present experimental data for the scattering angles of 6ā° and 10ā° for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 5 and 10 eV. The experimental triple-differential cross sections are internormalized across the measured scattering angles and ejected energies. The experimental data are compared with predictions from two molecular three-body distorted-wave approaches: one applying the orientation-averaged molecular orbital (OAMO) approximation and one using a proper average (PA) over orientation-dependent cross sections. The PA calculations are in better agreement with the experimental data than the OAMO calculations for both the angular dependence and the relative magnitude of the observed cross-section structures

    Dynamical (e, 2e) Studies Using Tetrahydrofuran As a DNA Analog

    Get PDF
    Triple differential cross sections for the electron-impact ionization of the outer valence orbital of tetrahydrofuran have been measured using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and at an ejected electron energy of 10 eV, over a range of momentum transfers. The experimental results are compared with theoretical calculations carried out using the molecular three-body distorted wave model. The results obtained are important for gaining an understanding of electron driven processes at a molecular level and for modeling energy deposition in living tissue

    Experimental and Theoretical Cross Sections for Molecular-frame Electron-impact Excitation-ionization of Dā‚‚

    Get PDF
    We present both experimental and theoretical results for the dissociative ionization of D2 molecules induced by electron impact. Cross sections are determined in the molecular frame and are fully differential in the energies and emission angles of the dissociation fragments. Transitions are considered from the X1Ī£g+ electronic ground state of D2 to the 2sĻƒg, 2pĻ€u and 2pĻƒu excited states of D2+. The experimental results are compared to calculations performed within the molecular four-body distorted-wave framework to describe the multicenter nature of the scattering process. The cross sections reveal a dramatic dependence on both the alignment of the internuclear axis with respect to the direction of the projectile momentum and on the symmetry of the excited dissociating state which is energetically resolved

    Theoretical and experimental study of (e,2e) ionization of the COā‚‚ (1Ļ€\u3csub\u3eg\u3c/sub\u3e) molecule at 250 eV

    Get PDF
    Triple differential cross sections (TDCSs) of the electron-impact ionization of carbon dioxide are measured in the coplanar asymmetric geometry, with incident electron energy value of 250eV, and ejected electron of 37eV. We will report the experimental results in comparison with the theoretical calculations of the M3DW and TCC (type 5) calculations
    corecore