28 research outputs found

    Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis

    Get PDF
    Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid

    Rapid and convenient determination of oxalic acid employing a novel oxalate biosensor based on oxalate oxidase and SIRE technology

    No full text
    A new method for rapid determination of oxalic acid was developed using oxalate oxidase and a biosensor based on SIRE (sensors based on injection of the recognition element) technology. The method was selective, simple, fast, and cheap compared with other present detection systems for oxalate. The total analysis time for each assay was 2-9 min. A linear range was observed between 0 and 5 mM when the reaction conditions were 30 degreesC and 60 s. The linear range and upper limit for concentration determination could be increased to 25 mM by shortening the reaction time. The lower limit of detection in standard solutions, 20 muM, could be achieved by means of modification of the reaction conditions, namely increasing the temperature and the reaction time. The biosensor method was compared with a conventional commercially available colorimetric method with respect to the determination of oxalic acid in urine samples. The urine oxalic acid concentrations determined with the biosensor method correlated well (R = 0.952) with the colorimetric method. (C) 2002 Elsevier Science B.V. All rights reserved

    Ammonium hydroxide detoxification of spruce acid hydrolysates

    No full text
    When dilute-acid hydrolysates from spruce are fermented to produce ethanol, detoxification is required to make the hydrolysates fermentable at reasonable rates. Treatment with alkali, usually by overliming, is one of the most efficient approaches. Several nutrients, such as ammonium and phosphate, are added to the hydrolysates prior to fermentation. We investigated the use of NH4OH for simultaneous detoxification and addition of nitrogen source. Treatment with N-H4OH compared favorably with Ca(OH)(2), Mg(OH)(2), Ba(OH)(2), and NaOH to improve fermentability using Saccharomyces cerevisiae. Analysis of monosaccharides, furan aldehydes, phenols, and aliphatic acids was performed after the different treatments. The NH4OH treatments, performed at pH 10.0, resulted in a substantial decrease in the concentrations of furfural and hydroxymethylfurfural. Under the conditions studied, NH4OH treatments gave better results than Ca(OH)(2) treatments. The addition of an extra nitrogen source in the form of NH4Cl at pH 5.5 did not result in any improvement in fermentability that was comparable to NH4OH treatments at alkaline conditions. The addition of CaCl2 or NH4Cl at pH 5.5 after treatment with NH4OH or Ca(OH)(2) resulted in poorer fermentability, and the negative effects were attributed to salt stress. The results strongly suggest that the highly positive effects of NH4OH treatments are owing to chemical conversions rather than stimulation of the yeast cells by ammonium ions during the fermentation

    Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates

    No full text
    In addition to fermentable sugars, dilute-acid hydrolysates of lignocellulose contain compounds that inhibit fermenting microorganisms, such as Saccharomyces cerevisiae. Previous results show that phenolic compounds and furan aldehydes, and to some extent aliphatic acids, act as inhibitors during fermentation of dilute-acid hydrolysates of spruce. Treatment of lignocellulose hydrolysates with alkali, usually in the form of overliming to pH 10.0, has been frequently employed as a detoxification method to improve fermentability. A spruce dilute-acid hydrolysate was treated with NaOH in a factorial design experiment, in which the pH was varied between 9.0 and 12.0, the temperature between 5 and 80°C, and the time between 1 and 7 h. Already at pH 9.0, >25% of the glucose was lost when the hydrolysate was treated at 80°C for 1 h. Among the monosaccharides, xylose was degraded faster under alkaline conditions than the hexoses (glucose, mannose, and galactose), which, in turn, were degraded faster than arabinose. The results suggest that alkali treatment of hydrolysates can be performed at temperatures below 30°C at any pH between 9.0 and 12.0 without problems with sugar degradation or formation of inhibiting aliphatic acids. Treatment with Ca(OH)2 instead of NaOH resulted in more substantial degradation of sugars. Under the harsher conditions of the factorial design experiment, the concentrations of furfural and 5-hydroxymethylfurfural decreased while the total phenolic content increased. The latter phenomenon was tentatively attributed to fragmentation of soluble aromatic oligomers in the hydrolysate. Separate phenolic compounds were affected in different ways by the alkaline conditions with some compounds showing an increase in concentration while others decreased. In conclusion, the conditions used for detoxification with alkali should be carefully controlled to optimize the positive effects and minimize the degradation of fermentable sugars

    Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce

    No full text
    Bioethanol can be produced from wood via acid hydrolysis, but detoxification is needed to achieve good fermentability. Overliming was investigated in a factorial designed experiment, in which pH and temperature were varied. Degradation of inhibitory furan aldehydes was more extensive compared to monosaccharides. Too harsh conditions led to massive degradation of sugars and formation of inhibiting acids and phenols. The ethanol productivity and yield after optimal overliming reached levels exceeding reference fermentations of pure glucose. A novel metric, the balanced ethanol yield, which takes both ethanol production and losses of fermentable sugars into account, was introduced and showed the optimal conditions within the investigated range. The findings allow process technical and economical considerations to govern the choice of conditions for overliming

    Ammonium hydroxide detoxification of spruce acid hydrolysates

    No full text
    When dilute-acid hydrolysates from spruce are fermented to produce ethanol, detoxification is required to make the hydrolysates fermentable at reasonable rates. Treatment with alkali, usually by overliming, is one of the most efficient approaches. Several nutrients, such as ammonium and phosphate, are added to the hydrolysates prior to fermentation. We investigated the use of NH4OH for simultaneous detoxification and addition of nitrogen source. Treatment with N-H4OH compared favorably with Ca(OH)(2), Mg(OH)(2), Ba(OH)(2), and NaOH to improve fermentability using Saccharomyces cerevisiae. Analysis of monosaccharides, furan aldehydes, phenols, and aliphatic acids was performed after the different treatments. The NH4OH treatments, performed at pH 10.0, resulted in a substantial decrease in the concentrations of furfural and hydroxymethylfurfural. Under the conditions studied, NH4OH treatments gave better results than Ca(OH)(2) treatments. The addition of an extra nitrogen source in the form of NH4Cl at pH 5.5 did not result in any improvement in fermentability that was comparable to NH4OH treatments at alkaline conditions. The addition of CaCl2 or NH4Cl at pH 5.5 after treatment with NH4OH or Ca(OH)(2) resulted in poorer fermentability, and the negative effects were attributed to salt stress. The results strongly suggest that the highly positive effects of NH4OH treatments are owing to chemical conversions rather than stimulation of the yeast cells by ammonium ions during the fermentation

    Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce

    No full text
    Bioethanol can be produced from wood via acid hydrolysis, but detoxification is needed to achieve good fermentability. Overliming was investigated in a factorial designed experiment, in which pH and temperature were varied. Degradation of inhibitory furan aldehydes was more extensive compared to monosaccharides. Too harsh conditions led to massive degradation of sugars and formation of inhibiting acids and phenols. The ethanol productivity and yield after optimal overliming reached levels exceeding reference fermentations of pure glucose. A novel metric, the balanced ethanol yield, which takes both ethanol production and losses of fermentable sugars into account, was introduced and showed the optimal conditions within the investigated range. The findings allow process technical and economical considerations to govern the choice of conditions for overliming
    corecore