6 research outputs found

    Geochemistry and oxidation state of Lau Basin basalts

    No full text
    The backarc glasses recovered during Ocean Drilling Program Leg 135 are unique among submarine tholeiitic glasses with respect to their oxygen fugacity and sulfur concentrations. Unlike mid-ocean-ridge basalt glasses, fO2 in these samples (inferred from ratios Fe3+/Fe2+) is high and variable, and S variations (90-1140 ppm) are not coupled with FeO concentration. Strong correlations occur between the alkali and alkaline-earth elements and both fO2 (positive correlations) and S concentrations (negative correlations). Correlations between fO2 and various trace elements are strongest for those elements with a known affinity for hydrous fluids (perhaps produced during slab dehydration), suggesting the presence of a hydrous fluid with high fO2 and high alkali and alkaline earth element concentrations in the Lau Basin mantle. Concentrations of S and fO2 are strongly correlated; high fO2 samples are characterized by low S in addition to high alkali and alkaline earth element concentrations. The negative correlations between S and these trace elements are not consistent with incompatible behavior of S during crystallization. Mass balance considerations indicate that the S concentrations cannot result simply from mixing between low-S and high-S sources. Furthermore, there is no relationship between S and other trace elements or isotope ratios that might indicate that the S variations reflect mixing processes. The S variations more likely reflect the fact that when silicate coexists with an S-rich vapor phase the solubility of S in the silicate melt is a function of fO2 and is at a minimum at the fO2 conditions recorded by these glasses. The absence of Fe-sulfides and the high and variable vesicle contents are consistent with the idea that S concentrations reflect silicate-vapor equilibria rather than silicate-sulfide equilibria (as in MORB). The low S contents of some samples, therefore, reflect the high fO2 of the supra-subduction zone environment rather than a low-S source component

    Geochemistry of ODP Site 135-834 basalts

    No full text
    New major, trace element, and isotope data (Pb, Sr, and Nd) reveal an impressive compositional variation in the basalts recovered from Site 834. Major element compositions span almost the entire range observed in basalts from the modern axial systems of the Lau Basin, and variations are consistent with low-pressure fractionation of a mid-ocean-ridge-basalt (MORB)-like parent, in which plagioclase crystallization has been somewhat suppressed. Trace element compositions deviate from MORB in all but one unit (Unit 7) and show enrichments in large-ion-lithophile elements (LILEs) relative to high-field-strength elements (HFSEs) more typically associated with island-arc magmas. The Pb-isotope ratios define linear trends that extend from the field of Pacific MORB to highly radiogenic values similar to those observed in rocks from the northernmost islands of the Tofua Arc. The Sr-isotope compositions also show significant variation, and these too project from radiogenic values back into the field for Pacific MORB. The variations in key trace element and isotopic features are consistent with magma mixing between two relatively mafic melts: one represented by Pacific MORB, and the other by a magma similar to those erupted on 'Eua when it was part of the original Tongan arc, or perhaps members of the Lau Volcanic Group (LVG). Based on our model, the most radiogenic compositions (Units 2 and 8) represent approximately 50:50 mixtures of these MORB and arc end-members. Magma mixing requires that both components are simultaneously available, and implies that melts have not shown a compositional progression from arc-like to MORB-like with extension at this locality. Rather, it is apparent that essentially pristine MORB can erupt as one of the earliest products of backarc initiation. Indeed, repetition of isotopic and trace element signatures with depth suggests that eruptions have been triggered by periodic injections of fresh MORB melts into the source regions of these magmas. The slow and almost amagmatic extension of the original arc complex envisaged to explain the observed chemistry is also consistent with the horst-and-graben topography of the western side of the Lau Basin. Given the similarities between basalts erupted at the modern Lau Basin spreading centers and MORB from the Indian Ocean, the overwhelming evidence for involvement of mantle similar to Pacific MORB in the petrogenesis of basalts from Site 834 is a new and important observation. It indicates that the original arc was underlain by asthenospheric material derived from the Pacific mantle convection cell, and that this has somehow been replaced by Indian Ocean MORB during the last ~5.5 Ma
    corecore