2 research outputs found

    Ca(2+)-mediated activation of ERK in hepatocytes by norepinephrine and prostaglandin F(2α): role of calmodulin and src kinases

    Get PDF
    BACKGROUND: Previous studies have shown that several agents that stimulate heptahelical G-protein coupled receptors activate the extracellular signal regulated kinases ERK1 (p44(mapk)) and ERK2 (p42(mapk)) in hepatocytes. The molecular pathways that convey their signals to ERK1/2 are only partially clarified. In the present study we have explored the role of Ca(2+) and Ca(2+)-dependent steps leading to ERK1/2 activation induced by norepinephrine and prostaglandin (PG)F(2α). RESULTS: Pretreatment of the cells with the Ca(2+) chelators BAPTA-AM or EGTA, as well as the Ca(2+) influx inhibitor gadolinium, resulted in a partial decrease of the ERK response. Furthermore, the calmodulin antagonists W-7, trifluoperazine, and J-8 markedly decreased ERK activation. Pretreatment with KN-93, an inhibitor of the multifunctional Ca(2+)/calmodulin-dependent protein kinase, had no effect on ERK activation. The Src kinase inhibitors PP1 and PP2 partially diminished the ERK responses elicited by both norepinephrine and PGF(2α). CONCLUSION: The present data indicate that Ca(2+) is involved in ERK activation induced by hormones acting on G protein-coupled receptors in hepatocytes, and suggest that calmodulin and Src kinases might play a role in these signaling pathways
    corecore