9 research outputs found

    High energy and high repetition rate broadband optical parametric amplification in the infrared

    No full text
    Alors que la science attoseconde connaît un développement fulgurant, le besoin de nouvelles sources laser adaptées à la génération d'impulsions attosecondes uniques est apparu. Grâce à ses propriétés d'accordabilité en fréquence et d'amplification de spectres ultra-larges à même de supporter des durées d'impulsions ultracourtes, conjuguées à la possibilité de stabiliser passivement la phase sous l'enveloppe (CEP) du champ électrique associé à l'impulsion laser, l'amplification paramétrique (OPA) s'est imposée comme un des outils incontournables pour la réalisation de telles sources.De plus, un intérêt croissant se manifeste pour la montée en cadence des sources d'harmoniques d'ordre élevé (HHG), en tirant parti des avancées des laser à fibre. Récemment fut démontrée la génération d'impulsions ultracourtes à très haute cadence, stabilisées en phase, dans la partie visible du spectre. Décaler la bande d'amplification vers l'infrarouge présenterait des avantages certains du point de vue de la génération d'harmoniques. En effet, travailler avec une source laser infrarouge permet d'étendre le spectre d'harmoniques et donc de réduire la durée des impulsions attosecondes générées. Jusqu'à présent, l'amplification paramétrique large bande dans l'infrarouge à haute cadence était rendue impossible par la difficulté à générer un signal à ces longueurs d'onde directement à partir d'un laser à fibre.Les travaux exposés ici décrivent la réalisation de nouvelles sources paramétriques, spécifiquement conçues en fonction des exigences de la génération d'impulsions attosecondes uniques, aussi bien en régime de forte énergie qu'à des cadences élevées.Nous présentons tout d'abord le développement d'un OPA avec stabilisation passive de la CEP, capable d'amplifier un spectre d'une largeur de 700 nm centré à 1,75 µm et délivrant une énergie de 450 µJ à la cadence de 10 Hz. Puis, nous détaillons une architecture originale d'amplification paramétrique à haute cadence pompé par un laser à fibre, qui nous a permis de générer des impulsions stabilisées en phase d'une durée inférieure à trois cycles optiques à la longueur d'onde centrale de 2,2 µm, avec une énergie de 5 µJ à la cadence de 100 kHz.Enfin, nous explorons la possibilité d'accroître la puissance de sortie des OPA infrarouges large bande à des niveaux de plusieurs dizaines de watts, grâce à la technique de combinaison paramétrique de plusieurs faisceaux de pompe fibrés.While attosecond science reaches new frontiers in physics, the need for innovative primary sources suited for the generation of single attosecond (as) pulses emerges. Featuring high tunability, ultra-broadband amplification bandwidth and the ability of passively stabilizing the random Carrier-Envelope Phase (CEP) of any pump laser, Optical Parametric Amplification (OPA) has proven to be one of the most effective tools to meet the stringent requirements of High-Order Harmonics (HHG) driving sources.Moreover, there is a growing interest for higher repetition rate HHG sources, pumped by Ytterbium-doped fiber lasers. High-repetition rate, CEP-stable, few cycle pulses have been successfully generated by OPAs operating in the visible part of the spectrum. Shifting the amplified bandwidth towards longer wavelengths would be clearly profitable. In fact, the shorter harmonic wavelength cut-off will allow significantly extending the harmonics spectrum and consequently shorten as pulse durations. Until know, generation of CEP-stable, few-cycle pulses in the infrared at ultra-high repetition rates was impossible due to the issue of generating a broadband infrared seed directly from a fiber laser. This thesis describes the implementation of new supercontinuum-seeded parametric sources, specifically designed for isolated attosecond pulses generation with high energy or high repetition rate.The development of a CEP-stable three-stages OPA source is reported, amplifying a 700 nm broad spectrum at a central wavelength of 1,75 µm with an energy of 450 µJ at a 10 Hz repetition rate. Then, a new architecture based on a two-stage cascaded OPA pumped by a home-made fiber laser is presented, which allowed us to generate CEP-stable 3-cycles pulses at the central wavelength of 2,2 µm, with an energy of 5 µJ at 100 kHz. Finally, we discuss the possibility of increasing the output power of parametric amplifiers to several tens of watts with broadband parametric combination of several fiber-pump beams

    High energy and high repetition rate broadband optical parametric amplification in the infrared

    No full text
    Alors que la science attoseconde connaît un développement fulgurant, le besoin de nouvelles sources laser adaptées à la génération d'impulsions attosecondes uniques est apparu. Grâce à ses propriétés d'accordabilité en fréquence et d'amplification de spectres ultra-larges à même de supporter des durées d'impulsions ultracourtes, conjuguées à la possibilité de stabiliser passivement la phase sous l'enveloppe (CEP) du champ électrique associé à l'impulsion laser, l'amplification paramétrique (OPA) s'est imposée comme un des outils incontournables pour la réalisation de telles sources.De plus, un intérêt croissant se manifeste pour la montée en cadence des sources d'harmoniques d'ordre élevé (HHG), en tirant parti des avancées des laser à fibre. Récemment fut démontrée la génération d'impulsions ultracourtes à très haute cadence, stabilisées en phase, dans la partie visible du spectre. Décaler la bande d'amplification vers l'infrarouge présenterait des avantages certains du point de vue de la génération d'harmoniques. En effet, travailler avec une source laser infrarouge permet d'étendre le spectre d'harmoniques et donc de réduire la durée des impulsions attosecondes générées. Jusqu'à présent, l'amplification paramétrique large bande dans l'infrarouge à haute cadence était rendue impossible par la difficulté à générer un signal à ces longueurs d'onde directement à partir d'un laser à fibre.Les travaux exposés ici décrivent la réalisation de nouvelles sources paramétriques, spécifiquement conçues en fonction des exigences de la génération d'impulsions attosecondes uniques, aussi bien en régime de forte énergie qu'à des cadences élevées.Nous présentons tout d'abord le développement d'un OPA avec stabilisation passive de la CEP, capable d'amplifier un spectre d'une largeur de 700 nm centré à 1,75 µm et délivrant une énergie de 450 µJ à la cadence de 10 Hz. Puis, nous détaillons une architecture originale d'amplification paramétrique à haute cadence pompé par un laser à fibre, qui nous a permis de générer des impulsions stabilisées en phase d'une durée inférieure à trois cycles optiques à la longueur d'onde centrale de 2,2 µm, avec une énergie de 5 µJ à la cadence de 100 kHz.Enfin, nous explorons la possibilité d'accroître la puissance de sortie des OPA infrarouges large bande à des niveaux de plusieurs dizaines de watts, grâce à la technique de combinaison paramétrique de plusieurs faisceaux de pompe fibrés.While attosecond science reaches new frontiers in physics, the need for innovative primary sources suited for the generation of single attosecond (as) pulses emerges. Featuring high tunability, ultra-broadband amplification bandwidth and the ability of passively stabilizing the random Carrier-Envelope Phase (CEP) of any pump laser, Optical Parametric Amplification (OPA) has proven to be one of the most effective tools to meet the stringent requirements of High-Order Harmonics (HHG) driving sources.Moreover, there is a growing interest for higher repetition rate HHG sources, pumped by Ytterbium-doped fiber lasers. High-repetition rate, CEP-stable, few cycle pulses have been successfully generated by OPAs operating in the visible part of the spectrum. Shifting the amplified bandwidth towards longer wavelengths would be clearly profitable. In fact, the shorter harmonic wavelength cut-off will allow significantly extending the harmonics spectrum and consequently shorten as pulse durations. Until know, generation of CEP-stable, few-cycle pulses in the infrared at ultra-high repetition rates was impossible due to the issue of generating a broadband infrared seed directly from a fiber laser. This thesis describes the implementation of new supercontinuum-seeded parametric sources, specifically designed for isolated attosecond pulses generation with high energy or high repetition rate.The development of a CEP-stable three-stages OPA source is reported, amplifying a 700 nm broad spectrum at a central wavelength of 1,75 µm with an energy of 450 µJ at a 10 Hz repetition rate. Then, a new architecture based on a two-stage cascaded OPA pumped by a home-made fiber laser is presented, which allowed us to generate CEP-stable 3-cycles pulses at the central wavelength of 2,2 µm, with an energy of 5 µJ at 100 kHz. Finally, we discuss the possibility of increasing the output power of parametric amplifiers to several tens of watts with broadband parametric combination of several fiber-pump beams

    Versatile dual stage tunable NOPA with pulse duration down to 17 fs and energy up to 3 µJ at 500 kHz repetition rate

    No full text
    We report on a new ultrashort NOPA tunable between 500 and 1000 nm. It delivers pulse energies up to 3,1 microJand pulse duration down to 17 fs at 500 kHz

    Two MHz tunable non collinear optical parametric amplifiers with pulse durations down to 6 fs

    No full text
    We report on the development of a 2 MHz non collinear optical parametric amplifier (NOPA) for high repetition rate time resolved X-ray or optical spectroscopy. Our modular and very flexible device is pumped by the second and third harmonics of a commercial femtosecond Ytterbium-doped fiber laser. The amplified pulses are tunable from 520 nm to 1000 nm with pulse durations between 15 and 30 fs over the full tuning range. The same setup is also suitable for broadband amplification and we demonstrate the generation of 6 fs pulses at a central wavelength of 850 nm as well as the generation of a broadband spectrum supporting 4.2 fs transform limited pulse duration at a central wavelength of 570 nm. Very high stability and compactness is achieved thanks to an optimized mechanical design

    Non-ablative femtosecond laser exposure of fused silica in the sub-50 fs regime (Conference Presentation)

    No full text
    In the non-ablative regime, femtosecond laser pulse duration is known to affect the nature of the modification induced in the microstructure of fused silica. It has been demonstrated than below 200 fs, two different regimes are found, one at low energy, leading to bulk densification while the second one – for higher energy, leading to self-organized structure - nicknamed nanogratings - that induce a net and localized volume expansion of the material. The first regime is particularly interesting for waveguides fabrication, although, so far, the reported refractive index gain remains modest, typically within 10-3 relative net increase that limits the level of compactness for photonics circuits making use of it. Here, we investigate further how shorter pulses, i.e. in the sub-50 fs range, can increase the level of densification and in turn, the net refractive index gain, and possibly lead to an improve process for photonics device fabrication. First results show that indeed, higher level of densification can be obtained, level that we quantify, and that can be further correlated to a net increase of refractive index

    BOXCARS-geometry 2DES setup in the 300-340nm range with pulse-to-pulse phase correction at 50kHz

    Get PDF
    A 40-nm broad pulse centred at 320nm is produced from an amplified Yb-doped fiber laser operated at 50kHz, and used in a BOXCARS geometry setup for 2DES, with shot-to-shot monitoring of the relative optical phase stability
    corecore