1,757 research outputs found

    Bus Transit Operational Efficiency Resulting from Passenger Boardings at Park-and-Ride Facilities

    Get PDF
    In order to save time and money by not driving to an ultimate destination, some urban commuters drive themselves a few miles to specially designated parking lots built for transit customers and located where trains or buses stop. The focus of this paper is the effect Park-and-Ride (P&R) lots have on the efficiency of bus transit as measured in five bus transit systems in the western U.S. This study describes a series of probes with models and data to find objective P&R influence measures that, when combined with other readily-available data, permit a quantitative assessment of the significance of P&R on transit efficiency. The authors developed and describe techniques that examine P&R as an influence on transit boardings at bus stops and on bus boardings along an entire route. The regression results reported are based on the two in-depth case studies for which sufficient data were obtained to examine (using econometric techniques) the effects of park-and-ride availability on bus transit productivity. Both Ordinary Least Square (OLS) regression and Poisson regression are employed. The results from the case studies suggest that availability of parking near bus stops is a stronger influence on transit ridership than residential housing near bus stops. Results also suggest that expanding parking facilities near suburban park-and-ride lots increases the productivity of bus operations as measured by ridership per service hour. The authors also illustrate that reasonable daily parking charges (compared to the cost of driving to much more expensive parking downtown) would provide sufficient capital to build and operate new P&R capacity without subsidy from other revenue sources

    Analysis of Adjoint Error Correction for Superconvergent Functional Estimates

    Get PDF
    Earlier work introduced the notion of adjoint error correction for obtaining superconvergent estimates of functional outputs from approximate PDE solutions. This idea is based on a posteriori error analysis suggesting that the leading order error term in the functional estimate can be removed by using an adjoint PDE solution to reveal the sensitivity of the functional to the residual error in the original PDE solution. The present work provides a priori error analysis that correctly predicts the behaviour of the remaining leading order error term. Furthermore, the discussion is extended from the case of homogeneous boundary conditions and bulk functionals, to encompass the possibilities of inhomogeneous boundary conditions and boundary functionals. Numerical illustrations are provided for both linear and nonlinear problems.\ud \ud This research was supported by EPSRC under grant GR/K91149, and by NASA/Ames Cooperative Agreement No. NCC 2-5431

    Analytic Adjoint Solutions for the Quasi-1D Euler Equations

    Get PDF
    The analytic properties of adjoint solutions are examined for the quasi-1D Euler equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint variables are continuous with zero gradient at the shock, and that an internal adjoint boundary condition is required at the shock. A Green's function approach is used to derive the analytic adjoint solutions corresponding to supersonic, subsonic, isentropic and shocked transonic flows in a converging-diverging duct of arbitrary shape. This analysis reveals a logarithmic singularity at the sonic throat and confirms the expected properties at the shock.\ud \ud This research was supported by EPSRC under grant GR/K9114

    An introduction to the adjoint approach to design

    Get PDF
    Optimal design methods involving the solution of an adjoint system of equations are an active area of research in computational fluid dynamics, particularly for aeronautical applications. This paper presents an introduction to the subject, emphasising the simplicity of the ideas when viewed in the context of linear algebra. Detailed discussions also include the extension to p.d.e.'s, the construction of the adjoint p.d.e. and its boundary conditions, and the physical significance of the adjoint solution. The paper concludes with examples of the use of adjoint methods for optimising the design of business jets.\ud \ud This research was supported by funding from Rolls-Royce plc, BAe Systems plc and EPSRC grants GR/K91149 and GR/L95700

    Adjoint recovery of superconvergent functionals from PDE approximations

    Get PDF
    Motivated by applications in computational fluid dynamics, a method is presented for obtaining estimates of integral functionals, such as lift or drag, that have twice the order of accuracy of the computed flow solution on which they are based. This is achieved through error analysis that uses an adjoint PDE to relate the local errors in approximating the flow solution to the corresponding global errors in the functional of interest. Numerical evaluation of the local residual error together with an approximate solution to the adjoint equations may thus be combined to produce a correction for the computed functional value that yields the desired improvement in accuracy. Numerical results are presented for the Poisson equation in one and two dimensions and for the nonlinear quasi-one-dimensional Euler equations. The theory is equally applicable to nonlinear equations in complex multi-dimensional domains and holds great promise for use in a range of engineering disciplines in which a few integral quantities are a key output of numerical approximations

    Measuring the Economic Impact of High Speed Rail Construction for California and the Central Valley Region

    Get PDF
    The nation’s first high-speed rail project is under construction in California’s Central Valley as of the date of this report. This research analyzes the immediate economic impacts, focused on employment and spending generated by California High-Speed Rail (HSR) Construction Package 1 (CP1) in the Central Valley and the rest of California. The authors use a two-pronged approach that combines original economic analysis and modeling with case study vignettes that explore the economic impacts through the lens of a sample of businesses and individuals directly impacted by this phase of HSR development. Overall, the economic analysis suggests that CP1-related spending (forecasted through to 2019) will lead to more than 31,500 additional jobs (both part-time and full-time) by the year 2029. Growth is concentrated in Fresno County, with the number of additional jobs estimated at more than 15,500. The analysis considers job growth across a number of alternative scenarios, converting the raw jobs estimates to full-time equivalent job-years. Under the most conservative HSR spending scenario considered, over the 15-year period evaluated, more than 25,000 full-time equivalent job-years are created. This amount to 14,900 jobs per billion (real) dollars of spending, or a cost of approximately $67,200 per job-year
    • …
    corecore