460 research outputs found

    Detection of Parasite-Specific DNA in Urine Sediment Obtained by Filtration Differentiates between Single and Mixed Infections of \u3cem\u3eSchistosoma mansoni\u3c/em\u3e and \u3cem\u3eS. haematobium\u3c/em\u3e from Endemic Areas in Ghana

    Get PDF
    Differential diagnosis of Schistosoma mansoni and S. haematobium, which often occur sympatrically in Africa, requires both urine and stool and the procedures are low in sensitivity. The standard diagnostic tests, such as Kato-Katz (KK) for S. mansoni eggs and presence of haematuria for S. haematobium both lack sensitivity, produce false-negative results and show reduced accuracy with decreasing intensity of infection. The need for a single diagnostic test with high sensitivity and specificity for both parasites is important as many African countries are implementing Mass Drug Administration (MDA) following recommendations of the World Health Organization (WHO). Eighty-six samples of urine sediment obtained by filtration were collected from a group of 5–23 years old people from an endemic area of southern Ghana. DNA was extracted from the urine sediment on filter paper from which a species-specific repeat fragment was amplified by polymerase chain reaction (PCR) with specific primers for S. mansoni and for S. haematobium. Additionally, all participants were tested by KK (stool) and dipstick for haematuria. Diagnostic parameters for all three tests were analyzed statistically. Amplification of species-specific DNA by PCR showed much higher sensitivity (99%–100%) and specificity (100%) compared to KK and haematuria (sensitivity: 76% and 30% respectively) for both schistosome species. The same pattern was observed when the data were stratified for age group and sex specific analysis. In addition PCR amplification detected DNA from 11 individuals infected with both parasites who were negative by KK and haematuria. This approach of detecting parasite specific DNA from either or both species in a single urine specimen is a practical advantage that avoids the need for two specimens and is more effective than standard tests including those based on serology. This promises to improve the effectiveness of surveillance of MDA control programs of schistosomiasis

    Diagnosis of \u3cem\u3eSchistosoma mansoni\u3c/em\u3e without the Stool: Comparison of Three Diagnostic Tests to Detect \u3cem\u3eSchiostosoma mansoni\u3c/em\u3e Infection from Filtered Urine in Zambia

    Get PDF
    Diagnosis for intestinal Schistosoma mansoni lacks sensitivity and is arduous to conduct. The standard diagnostic tests, Kato-Katz (KK) and circulating cathodic antigen (CCA) both lack sensitivity and with KK, require obtaining, transporting, and examining fresh stool. We compared diagnostic efficacy of KK, CCA, and polymerase chain reaction (PCR) to detect S. mansoni infection (species-specific DNA) from 89 filtered urine samples collected in Zambia. The PCR was the strongest indicator of positive cases with sensitivity and specificity of 100% in comparison to CCA (67% and 60%) and KK (50% and 100%). High positive and negative predictive values (100%) were also indicative of robustness of PCR. The same pattern was observed when stratified for sex and age group-specific analysis. Diagnosis of S. mansoni from filtered urine samples by PCR is an effective means to detect low intensity infection and would enhance the effectiveness of surveillance and control programs of schistosomiasis

    Electron Microprobe Chemical Dating of Uraninite as a Reconnaissance Tool for Leucogranite Geochronology

    Get PDF
    We suggest that electron microprobe techniques may be employed to date Tertiary samples of uraninite (UO~2~), which can contain very high concentrations of radiogenic Pb after only a few million of years of U and Th decay. Although uraninite is regarded as a rare accessory mineral, it is relatively abundant in leucogranitic rocks such as those found in the Himalayan orogen. We apply the U-Th-total Pb electron microprobe chemical dating method to a uraninite crystal from a ca. 18.3 Ma dike of the Mugu granite from the Upper Mustang region of central Nepal. With this technique, we calculate a mean chemical date that is consistent with isotope-dilution thermal ionization mass spectrometry (ID-TIMS) U-Pb dates obtained from seven other uraninite grains and a monazite crystal from the same sample. Electron microprobe chemical dating yields results that typically will be an order of magnitude less precise than conventional dates: in the specific case of the Mugu granite, single point chemical dates each have ca. 1.5 Ma 2[sigma] (95%) confidence level uncertainties. However, the mean chemical date of 15 point analyses of the crystal we study has a 2SE (2 standard error) uncertainty of ca. 400 ka, comparable to uncertainties obtained with ID-TIMS. These results show that electron microprobe chemical dating of uraninite has substantial promise as a reconnaissance tool for the geochronology of young granitic rocks. The electron microprobe work also reveals substantial chemical complexity within uraninite that must be taken into account. The analyzed crystal displays a texturally and chemically distinctive core and rim that suggests episodic growth. Concentration gradients in U, Th, and Y across the boundary imply diffusive modification. We estimate the diffusivity of U, Th, and Y in uraninite at ca. 700 °C to be > 10-7 cm2 s-1. In contrast, Pb shows no distinctive concentration gradient across the core-rim boundary, implying that Pb has a much higher diffusivity in uraninite than U, Th, or Y. We estimate that Pb loss of as much as ca. 8.9% has occurred in the uraninite grains we analyzed by ID-TIMS

    Universality in the merging dynamics of parametric active contours: a study in MRI-based lung segmentation

    Full text link
    Measurement of lung ventilation is one of the most reliable techniques of diagnosing pulmonary diseases. The time consuming and bias prone traditional methods using hyperpolarized H3{}^{3}He and 1{}^{1}H magnetic resonance imageries have recently been improved by an automated technique based on multiple active contour evolution. Mapping results from an equivalent thermodynamic model, here we analyse the fundamental dynamics orchestrating the active contour (AC) method. We show that the numerical method is inherently connected to the universal scaling behavior of a classical nucleation-like dynamics. The favorable comparison of the exponent values with the theoretical model render further credentials to our claim.Comment: 4 pages, 4 figure

    Point of Care Diagnosis of Multiple Schistosome Parasites: Species-specific DNA Detection in Urine by Loop-mediated Isothermal Amplification (LAMP)

    Get PDF
    Schistosomes are easily transmitted and high chance of repeat infection, so if control strategies based on targeted mass drug administration (MDA) are to succeed it is essential to have a test that is sensitive, accurate and simple to use. It is known and regularly demonstrated that praziquantel does not always eliminate an infection so in spite of the successes of control programs a residual of the reservoir survives to re-infect snails. The issue of diagnostic sensitivity becomes more critical in the assessment of program effectiveness. While serology, such as antigen capture tests might improve sensitivity, it has been shown that the presence of species-specific DNA fragments will indicate, most effectively, the presence of active parasites. Polymerase chain reaction (PCR) can amplify and detect DNA from urine residue captured on Whatman No. 3 filter paper that is dried after filtration. Previously we have detected S. mansoni and S. haematobium parasite-specific small repeat DNA fragment from filtered urine on filter paper by PCR. In the current study, we assessed the efficacy of detection of 86 urine samples for either or both schistosome parasites by PCR and loop-mediated isothermal amplification (LAMP) that were collected from a low to moderate transmission area in Ghana. Two different DNA extraction methods, standard extraction kit and field usable LAMP-PURE kit were also evaluated by PCR and LAMP amplification. With S. haematobium LAMP amplification for both extractions showed similar sensitivity and specificity when compared with PCR amplification (100%) verified by gel electrophoresis. For S. mansoni sensitivity was highest for LAMP amplification (100%) for standard extraction than PCR and LAMP with LAMP-PURE (99% and 94%). The LAMP-PURE extraction produced false negatives, which require further investigation for this field usable extraction kit. Overall high positive and negative predictive values (90% − 100%) for both species demonstrated a highly robust approach. The LAMP approach is close to point of care use and equally sensitive and specific to detection of species-specific DNA by PCR. LAMP can be an effective means to detect low intensity infection due to its simplicity and minimal DNA extraction requirement. This will enhance the effectiveness of surveillance and MDA control programs of schistosomiasis

    Large Eddy Simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure

    Get PDF
    AbstractLarge Eddy Simulations (LES) of a swirl-stabilised turbulent premixed flame in the well-known TECFLAM burner configuration have been carried out by solving transport equations of Favre-filtered reaction progress variable and mixture fraction. A recently proposed closure for the Scalar Dissipation Rate (SDR) is used for the modelling of the filtered reaction rate of reaction progress variable, whereas the Favre filtered mixture fraction is used to account for mixture stratification due to entrainment. The computational results are utilised to analyse the nature of stratification at representative locations in the swirl flame to gain physical insight into the flame structure. Additionally, two algebraic Flame Surface Density (FSD) closures, which were found to perform well in a previous analysis (Ma et al., 2013), are used for the modelling of the filtered reaction rate of reaction progress variable. The predictions of SDR closure are compared to the corresponding results obtained from algebraic FSD closures. The predictions of SDR based simulations show reasonably good agreement with experimental findings; the level of accuracy is at least comparable to that achieved with algebraic FSD models and to the results reported in the literature

    Robotic swarm connectivity with human operation and bandwidth limitations

    Get PDF
    Human interaction with robot swarms (HSI) is a young field with very few user studies that explore operator behavior. All these studies assume perfect communication between the operator and the swarm. A key challenge in the use of swarm robotic systems in human supervised tasks is to understand human swarm interaction in the presence of limited communication bandwidth, which is a constraint arising in many practical scenarios. In this paper, we present results of human-subject experiments designed to study the effect of bandwidth limitations in human swarm interaction. We consider three levels of bandwidth availability in a swarm foraging task. The lowest bandwidth condition performs poorly, but the medium and high bandwidth condition both perform well. In the medium bandwidth condition, we display useful aggregated swarm information (like swarm centroid and spread) to compress the swarm state information. We also observe interesting operator behavior and adaptation of operators' swarm reaction

    Investigating neglect benevolence and communication latency during human-swarm interaction

    Get PDF
    In practical applications of robot swarms with bioinspired behaviors, a human operator will need to exert control over the swarm to fulfill the mission objectives. In many operational settings, human operators are remotely located and the communication environment is harsh. Hence, there exists some latency in information (or control command) transfer between the human and the swarm. In this paper, we conduct experiments of human-swarm interaction to investigate the effects of communication latency on the performance of a humanswarm system in a swarm foraging task.We develop and investigate the concept of neglect benevolence, where a human operator allows the swarm to evolve on its own and stabilize before giving new commands. Our experimental results indicate that operators exploited neglect benevolence in different ways to develop successful strategies in the foraging task. Furthermore, we show experimentally that the use of a predictive display can help mitigate the adverse effects of communication latency
    corecore