7 research outputs found

    Analytical investigations in aircraft and spacecraft trajectory optimization and optimal guidance

    Get PDF
    A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations

    Thrust law effects on the long-period modes of aerospace craft

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77068/1/AIAA-1989-3379-266.pd

    Low-Cost Electrodeposition of Size-Tunable Single-Crystal ZnO Nanorods

    No full text
    In this paper we report a low cost, simple, electrochemical method for large-area growth of single crystal ZnO nanorods. The method utilizes a metallic zinc foil as the source of the necessary zinc ions for ZnO growth on indium-doped tin oxide (ITO) glass slides. The method is thoroughly discussed and investigated varying all the parameters involved. The resulting ZnO nanorods are highly oriented along c-axis and densely packed, while their length and diameter can be tuned by varying the growth parameters. Two different types of seed layers on the ITO glass slides are tested. A seed layer made by spin coating of ZnO nanoparticles results in a twofold increase of the ZnO nanorod surface density as compared with a ZnO thin film seed layer by physical vapor deposition. Additionally, the effect of oxygen supply during electrodeposition was investigated as a crucial regulatory parameter not only for the geometrical and topological characteristics of the ZnO nano-arrays but for their physical properties as well
    corecore